Андрей Смирнов
Время чтения: ~18 мин.
Просмотров: 0

Вольфрам

Input Ownership and Privacy

By putting input into Wolfram|Alpha in the form of a query, you are not relinquishing any of your ownership or rights to the content. By providing it to us in query form, you agree that we can store it in log files, and use it to generate the results given back to you. We may also use stored inputs to evaluate performance of the website or study usage patterns, for example examining inputs that seem to create problems for the system, or testing new versions of the system against logs of previous inputs.

We will not attempt to associate individual Wolfram|Alpha inputs with individual human users, and will not release individual or aggregated lists of inputs, or any personally identifiable information, to any third party, except in response to lawful court orders. We will not attempt to assert intellectual property rights over anything given as input to Wolfram|Alpha simply on the basis of its having been given to us as input. For more details, see our Privacy Policy.

Получение и использование

Вольфрам в чистом виде из руд получить очень трудно. Поэтому чаше всего из полиметаллических или молибдено- и вольфрамово-железных руд выделяют ферровольфрам—основное сырье для металлургической промышленности. Для получения чистых металлов их подвергают обжигу до оксидов или хлоридов и последующему восстановлению.
Металлы используются для создания высококачественных легированных сталей — жаростойких, конструкционных, инструментальных, быстрорежущих. Важным свойством таких сталей является сохранение твердости при высоких температурах. Подобные сплавы служат для изготовления нити в электролампах. Добавка металлов к стали резко меняет ее структуру и придает ей способность выдерживать температурные нагрузки и воздействие коррозионных агентов.

Вы читаете, статья на тему вольфрам

Основные характеристики вольфрама:

  1. Порядковый номер74
  2. Атомный вес183,82
  3. Плотность19,3
  4. Радиус атома1,41
  5. Радиус шестивалентного иона0,50
  6. Электросопротивление5,5*20
  7. Температура плавления3377

 

Удельное электросопротивление 5,5 ом·см (20 °C). На воздухе вольфрам не изменяется, однако в присутствии влаги порошкообразный вольфрам медленно окисляется; при 700 °C вольфрам разлагает воду с образованием двуокиси вольфрама и водорода. Кислоты на вольфрам почти не действуют. Концентрированная азотная кислота и царская водка окисляют вольфрам с поверхности; растворяется же он в смеси фтористоводородной и азотной кислот.

Растворение металлического вольфрама возможно также в насыщенном растворе щавелевой кислоты в присутствии пергидроля, при этом образуются комплексные соединения вольфрама с щавелевой кислотой.

Температура кипения вольфрама около 5800°K. Упругость паров вольфрама изменяется с температурой следующим образом:

Температура °C 3990 4507 4690 4886 5168 5403
Упругость пара, мм рт.ст 1 10 20 60 100 200

Растворы щелочей не действуют на вольфрам, однако в присутствии окислителей, например перекиси водорода или персульфата аммония, вольфрам может растворяться в аммиаке. В присутствии же окислителей металлический вольфрам хорошо сплавляется со щелочами или с содой, образуя, так же как и в предыдущем случае, соль вольфрамовой кислоты.

Трехокись вольфрама или вольфрамовый ангидрид. Важнейшее соединение, являющееся конечным продуктом переработки вольфрамового сырья,-желтое порошкообразное вещество, при нагревании оранжевое. Упругость паров трехокиси вольфрама достигает одной атмосферы при 1357°C, но заметная вагонка начинается при значительно более низких температурах. Поэтому при получении трехокиси вольфрама прокаливанием вольфрамовой кислоты не рекомендуется, во избежание потерь, повышать температуру печи выше 800-850°C.Если же требуется прокалить вольфрамовую кислоту с целью количественного определения вольфрама, то придерживаются еще более низких температур — 750-800°C.

Трехокись вольфрама практически нерастворима в воде и в кислотах.

Свойства вольфрама

Температура плавления у него находится на уровне 2500 градусов Цельсия. Но только этим качеством положительные свойства этого материала не ограничиваются. Имеются у него и другие преимущества, о которых следует сказать. Одно из них — высокая прочность, демонстрируемая в условиях обычных и повышенных температур. Например, когда железо и сплавы, изготовленные на его основе, нагреваются до температуры 800 градусов Цельсия, происходит снижение прочности в 20 раз. В таких же условиях прочность вольфрама уменьшается только в три раза. В условиях 1500 градусов Цельсия прочность железа практически сведена к нулю, а вот у вольфрама она находится на уровне железа при обыкновенной температуре.

В наши дни 80% производимого в мире вольфрама используется главным образом при изготовлении стали высокого качества. Более половины марок стали, используемых машиностроительными предприятиями, содержат в своем составе вольфрам. Они применяют их в качестве основного материала для деталей турбин, редукторов, а также используют такие материалы для изготовления компрессорных машин. Из машиностроительных сталей, содержащих вольфрам, изготавливаются валы, зубчатые колеса, а также цельнокованый ротор.

Кроме этого их применяют для изготовления коленчатых валов, шатунов. Добавление в состав машиностроительный стали, кроме вольфрама и других легирующих элементов, повышает их прокаливаемость. Кроме этого, обеспечивается возможность для получения мелкозернистой структуры. Наряду с этим, у производимых машиностроительных сталей увеличиваются такие характеристики, как твердость и прочность.

При производстве жаропрочных сплавов использование вольфрама является одним из обязательных условий. Необходимость применения именно этого металла обусловлена тем, что он является единственным, который в состоянии выдерживать существенные нагрузки в условиях высоких температур, превышающих величину плавления железа. Вольфрам и соединения на основе этого металла отличаются высокой прочностью и обладают хорошими показателями упругости. В этом плане они превосходят другие металлы, входящие в группу тугоплавких материалов.

Минусы

Однако, перечисляя преимущества вольфрама, нельзя не отметить и недостатки, которые присущи этому материалу.

  • В качестве главного можно называть его низкое сопротивление окислению при температурных условиях выше 700 градусов Цельсия. Поэтому для материалов из вольфрама необходимо дополнительно обеспечить соответствующую защиту.
  • Другой недостаток сплавов на основе вольфрама заключается в их низкой пластичности в условиях температуры 500 градусов Цельсия.
  • Вольфрам — дефицитный материал, что также можно считать недостатком этого металла.

Вольфрам, который выпускается в настоящее время, содержит в составе торий 2%. Такой сплав называется торированный вольфрам. Для него характерен предел прочности 70 МПа при температуре 2420 градусов Цельсия. Хотя значение этого показателя невысоко, но отметим, что только 5 металлов вместе с вольфрамом не меняют своего твердого состояния в условиях такой температуры.

В эту группу входят молибден, у которого температура плавления составляет 2625 градусов. Еще один металл — технеций. Однако сплавы на его основе в ближайшее время вряд ли будут производиться. Рений и тантал не обладают высокой прочностью при таких условиях температуры. Поэтому вольфрам — единственный материал, который в состоянии обеспечить достаточную прочность при высоких температурных нагрузках. По той причине, что он относится к числу дефицитных, если имеется возможность для его замены, то производители используют альтернативу ему.

Однако при производстве отдельных компонентов нет материалов, которые могли бы полноценно заменить вольфрам. Например, при изготовлении нитей накаливания электроламп и анодов дуговых ламп постоянного тока применяется только вольфрам, поскольку подходящих заменителей просто нет. Также его используют при изготовлении электродов для аргонодуговой и атомно-водородной сварки. Также с применением этого материала изготавливается нагревательный элемент, используемый в условиях от 2000 градусов Цельсия.

Тантал

Внешне имеет светло-серый цвет с небольшим голубоватым оттенком. Температура плавления близка к 3000 °С. Хорошо поддается основным видам обработки. Его можно ковать, прокатывать, производить волочение для изготовления проволоки. Эти операции не требуют значительного нагрева. Для удобства дальнейшего использования тантал изготавливают в форме фольги и тонких листов. Повышение температуры вызывает активное взаимодействие со всеми газами, кроме инертных – с ними никаких реакций не наблюдается.

Тантал

Из тантала производят внутренние элементы генераторных ламп (магнетронов и клистронов). Он активно используется при производстве пластин в электролитических конденсаторах. Очень удобен для изготовления пленочных резисторов. Активно применяется для изготовления так называемых лодочек в испарителях, в которых осуществляется термическое напыление различных материалов на тонкие пленки.

Ввиду ряда своих уникальных качеств, считается незаменимым в ядерной, аэрокосмической и радиоэлектронной промышленности.

Характеристика элементов

При рассмотрении нижних элементов подгруппы обращает внимание рост ионизационного потенциала при практически неизменном атомном и ионном радиусе. Это означает уплотнение электронных оболочек атомов

Близость радиусов обусловливает большее сходство молибдена с вольфрамом, чем этих металлов с хромом. Устойчивость степеней окисления у них иная, чем у хрома. Состояние +2 у него почти не встречается, а +3 для W нехарактерно, более устойчивы +4 и +6 .
Сходство с элементами подгруппы VIA проявляется в образовании соединений SF6, WF6 и ионов SO   , связи в которых в значительной степени ковалентны.

Going Further…

Wolfram|Alpha Pro

If you’re just using the free Wolfram|Alpha website, you’re only getting the “tourist” experience. Wolfram|Alpha Pro gives you immediate access to the full and growing power of Wolfram|Alpha.

Learn with step-by-step solutions

Step-by-step calculators for calculus, algebra, trigonometry, equation solving and basic math. Gain more understanding of your math homework with step-by-step hints guiding you from problems to answers!Learn more about step-by-step solutions »

Web Apps powered by Wolfram|Alpha

Easy inputs with our form-based interfaces get you straight to answers. Our Web App collections cover a variety of topics from course assistants, finance to fitness, stock trading to password generation and more.Learn more about Web Apps »

Go beyond text input

Use an extended keyboard to type math symbols right into the input field. Upload and process files, tabular data and images.

  • Extended keyboard
  • File upload
  • Data input
  • Image input

Wolfram Problem Generator

With Wolfram Problem Generator, each question is generated instantly, just for you. Pro subscribers get integrated step-by-step solutions and can create printable worksheets for study sessions and quizzes.Learn more about Wolfram Problem Generator »

Применение

Производство сплавов из этого металла имеет одну особенность, которая связана с тугоплавкостью этого материала. В условиях высоких температур многие металлы меняют свое состояние и превращаются в газы или сильно летучие жидкости. Поэтому для получения сплавов, в составе которых присутствует вольфрам, используют методы порошковой металлургии.

Такие методы предполагают прессование смеси порошков металлов, последующее спекание и дальнейшее подвергание их дуговой плавке, осуществляемой в электродных печах. В отдельных случаях спекаемый вольфрамовый порошок дополнительно пропитывают жидким раствором какого-либо другого металла. Таким образом, получаются псевдосплавы из вольфрама, меди, серебра, используемые для контактов в электрических установках. По сравнению с медными, долговечность у таких изделий выше в 6-8 раз.

У этого металла и сплавов из него имеются большие перспективы для дальнейшего расширения сферы применения. Прежде всего, необходимо отметить, что в отличие от никеля эти материалы могут работать на «огненных» рубежах. Использование вместо никеля вольфрамовых изделий приводит к тому, что у энергетических установок повышаются параметры работы. А это приводит к возрастанию КПД оборудования. Кроме того, изделия на основе вольфрама легко выдерживают эксплуатацию в тяжелых условиях. Таким образом, можно уверенно заявлять о том, что группу таких материалов в ближайшее время вольфрам продолжит возглавлять.

Вольфрам в электротехнике

  • она была простой в изготовлении;
  • её производство было недорогим.

Единственным недостатком угольной нити было то, что срок службы у неё был небольшой. После 1898 года у угольной нити накаливания ламп появился конкурент в виде осмия. Начиная с 1903 года, для производства электрических ламп стали использовать тантал. Однако уже в 1906 году вольфрам вытеснил эти материалы и стал применяться для изготовления нитей для ламп накаливания. Используют его и в наши дни при изготовлении современных электрических лампочек.

Чтобы обеспечить этому материалу высокие показатели жаростойкости, на поверхность металла наносят слой рения и тория. В некоторых случаях нить накаливания из вольфрама изготавливается с добавлением рения. Связано это с тем, что в условиях высоких температур этот металл начинает испаряться, а это приводит к тому, что нить из этого материала становится тоньше. Добавление в состав рения приводит к уменьшению эффекта испарений в 5 раз.

В наше время вольфрам активно применяется не только при производстве электротехники, но и различной военно-промышленной продукции. Его добавление в оружейную сталь обеспечивает высокую эффективность материалам такого вида. Кроме того, он позволяет улучшить характеристики броневой защиты, а также сделать более эффективными бронебойные снаряды.

Хром

Хром — уникальный металл. Широко применяется в промышленности благодаря своим замечательным свойствам: прочности, устойчивости к внешним воздействиям (нагреву и коррозии), пластичности. Достаточно твердый, но хрупкий металл. Имеет серо-стальной цвет. Весь необходимый хром извлекают из руды двух видов хромита железа или окиси хрома.

Основными его свойствами являются:

  • Даже при нормальной температуре обладает почти идеальным антиферромагнитным упорядочением. Это придаёт ему отличные магнитные свойства.
  • По-разному реагирует на воздействие водорода и азота. В первом случае сохраняет свою прочность. Во втором, становится хрупким и полностью теряет все свои пластические свойства.
  • Обладает высокой устойчивостью против коррозии. Это происходит благодаря тому, что при взаимодействии с кислородом на поверхности образуется тонкая защитная плёнка. Она служит для защиты от дальнейшей коррозии.

Кристаллы хрома

Он используется в металлургической, химической, строительной индустриях. Хром, как легирующая добавка, обязательно используется для производства различных марок нержавеющей стали. Особое место занимает при изготовлении такого материала как нихром. Этот материал способен выдерживать очень высокие температуры. Поэтому его используют в различных нагревательных элементах. Хромом активно покрывают поверхности различных деталей (металла, дерева, кожи). Это процесс осуществляется с помощью гальваники.

Токсичность некоторых солей хрома используют для сохранения древесины от повреждения, вредного воздействия грибков и плесени. Они также хорошо отпугивают муравьёв, термитов, насекомых разрушителей деревянных конструкций. Солями хрома обрабатывают кожу. Хром применяется при изготовлении различных красителей.

Благодаря высокой теплостойкости его используют как огнеупорный материал для доменных печей. Каталитические свойства соединений хрома успешно используют при переработке углеводородов. Его добавляют при производстве магнитных лент наивысшего качества. Именно он обеспечивает низкий коэффициент шума и широкую полосу пропускания.

Применение

Главное применение вольфрама — как основа тугоплавких материалов в металлургии.

Металлический вольфрам

Нить накаливания

  • Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
  • Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).
  • Вольфрам используют в качестве электродов для аргонно-дуговой сварки.
  • Сплавы вольфрама, ввиду его высокой температуры плавления, получают методом порошковой металлургии. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей.
  • Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.
  • Высокая плотность вольфрама делает его удобным для защиты от ионизирующего излучения. Несмотря на бо́льшую плотность по сравнению с традиционным и более дешёвым свинцом, защита из вольфрама оказывается менее тяжёлой при равных защитных свойствах или более эффективной при равном весе. Из-за тугоплавкости и твёрдости вольфрама, затрудняющих его обработку, в таких случаях используются более пластичные сплавы вольфрама с добавлением никеля, железа, меди и др. либо взвесь порошкообразного вольфрама (или его соединений) в полимерной основе.

Соединения вольфрама

  • Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам.
  • Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка.

Некоторые соединения вольфрама применяются как катализаторы и пигменты.

Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К).

Другие сферы применения

Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества.
Стабильный 184W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Рынок вольфрама

Цены на металлический вольфрам (содержание элемента порядка 99 %) на конец 2010 года составляли около 40—42 долларов США за килограмм, в мае 2011 года составляли около 53—55 долларов США за килограмм. Полуфабрикаты от 58 USD (прутки) до 168 (тонкая полоса). В 2014 году цены на вольфрам колебались в диапазоне от 55 до 57 USD.

Вольфрам это

Aт. вес 183,86. Природные соединения вольфрама в большинстве случаев представляют собой соли вольфрамовой кислоты H2WO4. Самая важная вольфрамовая руда — вольфрамит — состоит из железной и марганцовой солей вольфрамовой кислоты, образующих изоморфную смесь (Fe,Mn) WO4. Часто встречается также минерал шеелит CaWО4, названный так в честь Шееле, который в 1781 г. впервые получил из него вольфрамовую кислоту.

По распространенности в земной коре (0,007 весовых процента) вольфрам уступает хрому, но несколько превосходит молибден. Крупные месторождения вольфрама находятся в Китае, Бирме, США, Боливии, на Малайских островах и в Португалии. Мировая (без СНГ) добыча вольфрамовых концентратов (содержащих 60% WО3) в 1953 г. составила 42 тыс. г.

Для выделения вольфрама из вольфрамита последний сплавляют в присутствии воздуха с содой. Вольфрам переходит в натриевую соль вольфрамовой кислоты Na2W04, которая извлекается из полученного сплава водой, а железо и марганец превращаются в нерастворимые в воде соединения Fe2О3 и Мn3О4(ср. получение хроматов из хромистого железняка).

Из водного раствора действием соляной кислоты выделяют свободную .вольфрамовую кислоту в виде аморфного желтого осадка:

Na2WO4 + 2HCl = ↓ H2WO4 + 2NaCl

При прокаливании вольфрамовая кислота переходит в вольфрамовый ангидрид WO3. Восстанавливая его углем или водородом, получают порошок металлического вольфрама, подвергаемый в дальнейшем для получения сплошной массы металла такой же обработке, как и порошок молибдена.

Металлический вольфрам представляет собой тяжелый белый; металл уд. веса 19,3. Его температура плавления (3380°) вышеС чем температура плавления всех других металлов. Вольфрам можно сваривать и вытягивать в тонкие нити диаметром до 0,2 мм.

На воздухе вольфрам окисляется только при температуре красного каления. Он очень устойчив по отношению к кислотам, даже к царской водке, но растворяется в смеси азотной и фтористоводородной кислот.

Большая часть добываемого вольфрама расходуется в металлургии для приготовления специальных сталей и сплавов. Быстро-режущая инструментальная сталь содержит до 18—22% вольфрама и обладает способностью самозакаливаться. Такая сталь не теряет своей твердости даже при нагревании докрасна. Поэтому применение резцов, сделанных из вольфрамовой стали, позволяет значительно увеличить скорости резания металлов.

Другая отрасль промышленности, широко использующая вольфрам, — это производство электрических ламп накаливания, где вольфрам является незаменимым ввиду его высокой температуры плавления. Как известно, количество света, испускаемого накаленным телом, зависит от температуры накала. Чем выше температура, тем большее относительное количество тепловой или электрической энергии превращается в световую. Угольные нити, применявшиеся в первых электрических лампах, нельзя было накаливать выше температуры, при которой испускается желтый свет, так как уголь начинал испаряться; вольфрам же практически не испаряется даже при температуре белого каления. Применение в лампах накаливания вольфрамовых нитей позволяет превращать в световую энергию больше электрической энергии, чем при употреблении угольных нитей; поэтому в настоящее время нити в электрических лампах приготовляют почти исключительно из вольфрама.

Соединения вольфрама очень похожи на соединения молибдена. Наиболее важны вольфрамовая кислота H2WO4 и ее соли, называемые вольфраматами. Некоторые вольфраматы применяются в качестве художественных красок.

Карбиды вольфрама, WC и W2C, представляют собой вещества, по твердости почти не уступающие алмазу. Из смеси карбидов вольфрама с 10—15% порошкообразного металлического кобальта методами металлокерамики получают сплавы исключительной твердости, широко применяемые в буровой технике, для изготовления режущего инструмента и для других целей.Использование металлокерамических сплавов на основе карбидов вольфрама, например сплава победит, в металлообрабатывающей промышленности позволило значительно увеличить производительность станков.

Вы читаете, статья на тему Вольфрам (Wolfram)

Attribution and Licensing

As Wolfram|Alpha is an authoritative source of information, maintaining the integrity of its data and the computations we do with that data is vital to the success of our project. We generate information ourselves, and we also gather, compare, contrast, and confirm data from multiple external sources. Where we have used external sources of data we list the source or sources we relied on, but in most cases the assemblages of data you get from Wolfram|Alpha do not come directly from any one external source. In many cases the data you are shown never existed before in exactly that way until you asked for it, so its provenance traces back both to underlying data sources and to the algorithms and knowledge built into the Wolfram|Alpha computational system. As such, the results you get from Wolfram|Alpha are correctly attributed to Wolfram|Alpha itself.

If you make results from Wolfram|Alpha available to anyone else, or incorporate those results into your own documents or presentations, you must include attribution indicating that the results and/or the presentation of the results came from Wolfram|Alpha. Some Wolfram|Alpha results include copyright statements or attributions linking the results to us or to third-party data providers, and you may not remove or obscure those attributions or copyright statements. Whenever possible, such attribution should take the form of a link to Wolfram|Alpha, either to the front page of the website or, better yet, to the specific query that generated the results you used. (This is also the most useful form of attribution for your readers, and they will appreciate your use of links whenever possible.)

Failure to properly attribute results from Wolfram|Alpha is not only a violation of these terms, but may also constitute academic plagiarism or a violation of copyright law. Attribution is something we expect you to give us in exchange for us having provided you with a high-quality free service.

The specific images, such as plots, typeset formulas, and tables, as well as the general page layouts, are all copyrighted by Wolfram|Alpha at the time Wolfram|Alpha generates them. A great deal of scholarship and innovation is included in the results generated and displayed by Wolfram|Alpha, including the presentations, collections, and juxtapositions of data, and the choices involved in formulating and composing mathematical results; these are also protected by copyright.

You may use any results, including copyrighted results, from Wolfram|Alpha for personal use and in academic or non-commercial publications, provided you comply with these terms.

If you want to use copyrighted results returned by Wolfram|Alpha in a commercial or for-profit publication, we will usually be happy to grant you a low- or no-cost license to do so. To request a commercial-use license, use and provide the input for which you want to use the corresponding output along with information concerning the nature of your proposed use. Your request will be reviewed and answered as quickly as is practical.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации