Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Ультразвуковая сварка металла

Как это работает?

Что такое ультразвуковая сварка пластмасс? Если по-простому, это процесс, в котором происходит превращение механических колебаний, созданных специальным оборудованием, в тепло, энергия которого образует сварочный шов.

Иными словами, происходит трансформация энергии (механическая переходит в тепловую), поэтому подобный процесс можно назвать «использованием энергии преобразования».

Первый этап представляет собой воздействие на детали на молекулярном уровне: тепло, сформировавшееся в результате трансформации механической энергии, точечно фокусируется в месте будущего скрепления материалов.

Происходит увеличение показателя движения молекул пластмассы. Из-за этого начинается оплавление и соединение элементов конструкции. Второй этап представляет собой остывание мест сварки пластмассы и формирование крепкого шва.

Так вкратце можно описать принцип работы этого метода. Подробнее этот материал приводится в следующем разделе.

Как происходит ультразвуковая сварка пластмасс?

Ультразвуковой генератор вырабатывает электрические колебания ультразвуковой частоты (20 — 50кГц), преобразуемые пьезокерамическим конвертером в механические колебания сварочного инструмента (волновода или сонотрода). Под действием пневмоцилиндра волновод прижимает свариваемые детали друг к другу и передаёт колебания в зону ультразвуковой сварки. В результате свариваемые полимеры деформируются и диффузируют между собой: аморфные материалы переходят в вязкотекучее состояние, а кристаллические нагреваются до температуры плавления кристаллов. Ультразвук отключается, а детали ещё некоторое время выдерживаются под давлением «холодного» волновода для равномерного распределения расплавленного материала в сварочном шве и его застывания. Затем волновод поднимается в исходное положение, а готовое изделие извлекается из опоры. Как правило, детали соединяются «внахлёст». При этом принято различать точечную ультразвуковую сварку, шовную сварку и сварку по периметру изделия.

Основными отличительными чертами УЗС пластмасс является:

  • возможность УЗС, в т.ч. автоматизированной, по поверхностям, загрязненным различными продуктами;
  • локальное выделение теплоты в зоне сварки, что исключает перегрев пластмассы, как это имеет место при сварке нагретым инструментом, нагретыми газами и т.д.;
  • возможность получения неразъемного соединения при сварке жестких пластмасс на большом удалении от точки ввода УЗ энергии;
  • возможность выполнения соединений в труднодоступных местах;
  • при УЗС нагрев материала до температуры сварки осуществляется быстро; время нагрева исчисляется долями секунды.

Техническим центром «ВИНДЭК» производятся и поставляются комплекты оборудования для следующих технологических операций:

  • ультразвуковой сварки пластмасс (полистирола, АБС-пластика, полиэтилена, лавсана, капрона и т.п.), применяемых в пищевой, химической, авиационной, автомобильной, и других отраслях промышленности;
  • производства дорожной георешетки;
  • ультразвуковой резки термопластичных материалов-полимеров различных марок, бумаги, пленок, продуктов питания и др.;
  • армирования пластмасс металлами, развальцовки заклепок из полимера, нарезания резьбы в пластмассе, соединение пластмасс с металлами;
  • изготовление изделий из нетканых материалов на основе полипропилена, капрона, лавсана и др.

Сущность ультразвуковой сварки

При УЗС металлов, необходимые условия для образования сварного соединения происходят
под воздействие ультразвуковых волн, преображённых в механические колебания.
Энергия вибрации формирует сложные растягивающие и сжимающие напряжения, а также
напряжения среза.

Когда напряжения превысят предел упругости свариваемых материалов, на плоскости
их контакта происходит пластическая деформация. Под воздействие ультразвука
и пластической деформации, поверхностные оксидные плёнки разрушаются и удаляются
с поверхности, после чего образуется сварное соединение.

При этом, повышение температуры в зоне сварки не оказывает существенного влияния
на процесс сваривания. При ультразвуковой сварке структура и свойства свариваемых
металлов изменяются незначительно.

Основные схемы процесса сварки ультразвуком

Ультразвуковая сварка выполняется на специальных установках, в которых встроен
генератор электромагнитных волн высокой частоты. Также в установке имеется механическая
колебательная система, аппаратура управления процессом сварки и привод, создающий
давление на сварное соединение. Основные схемы установок для ультразвуковой
сварки металлов представлены на рисунке:

Трансформирование электромагнитных волн в механические колебания и подача их
в зону сварки осуществляется с помощью колебательной системы. Основным узлом
колебательных систем (см. рисунок) является преобразователь (поз.1). Преобразователь
производит механические колебания. При помощи волноводного звена (поз. 2) происходит
передача энергии к сварочному наконечнику и увеличивается амплитуда колебаний,
по сравнение с амплитудой исходных волн преобразователя. Кроме этого, преобразователь
трансформирует сопротивление нагрузки и концентрирует энергию в заданной области
сварного соединения (поз. 5).

При помощи акустической развязки (поз. 3) от корпуса машины, почти вся энергия
механических колебаний преобразовывается и концентрируется на участке контакта.
Сварочный наконечник (поз. 4) является проводным волноводным звеном между нагрузкой
и колебательной системой. При помощи него задаётся необходимая площадь и объём
непосредственного источника ультразвуковых колебаний в зоне сварки.

Магнитная дефектоскопия

Методы контроля качества сварных соединений включают в себя такой неразрушающий вид как магнитная дефектоскопия. Этот метод применяется для контроля изделий, имеющих ферромагнитный состав. Он поможет обнаружить неглубокие, но скрытые трещинки, а также инородные включения.

Когда нарушается целостность конструкции внутри нее, то появляется своеобразная «зона рассеяния». При этом на краях образуются полюса. На внешней поверхности сварного изделия напротив внутренней зоны рассеяния происходит ее фиксация. Магнитные линии начинают огибать эту зону, и происходит ее четкое выделение. В этом месте происходит изменение плотности магнитного поля.

Магнитный контроль сварных швов основан на образовании магнитного поля, которое при проверке пронизывает сварное соединение. Для этого применяется особое оборудование. С помощью дефектоскопов имеется возможность обнаружения микроскопических трещин с размером их толщины до 0,001 мм. Суть метода состоит в том, что магнитный поток, путешествуя вдоль сварочного шва, при появлении на его пути дефекта обходит его. Это является следствием того, что магнитная проницаемость в этом месте гораздо меньше, чем магнитная проницаемость самого металла.

Для обнаружения продольных трещин применяется циркулярный вид намагничивания, для поперечных трещин — продольный. Также имеется комбинированный способ.

Контроль сварочных швов методом магнитной металлографии может осуществляться несколькими способами.

Магнитопорошковый

Проверка сварки производится с помощью магнитного порошка, который представляет собой совокупность мельчайших частичек намагниченного металла. В результате воздействия рассеяния магнитного поля эти частички меняют свое положение в пространстве.

Таким методом можно осуществлять контроль качества сварных соединений трубопроводов.

Как правило, ферромагнитный порошок представляет собой железо. Он может использоваться в следующих видах:

  • сухой;
  • водная эмульсия;
  • маслянистая суспензия.

Процесс проверки заключается в том, что частицы порошка, на которые оказывают действие электромагнитные поля, перемещаются равномерно по поверхности. Когда они встречают на своем пути дефект, частицы порошка начинают скапливаться, образуя в таких местах своеобразные валики. Их форма и размер позволяют судить о соответствующих параметрах найденного дефекта.

Технологические операции для выполнения магнитопорошкового метода:

  1. Подготовка поверхности. Очищение ее от грязи, шлака, окалин, следов брызг, наплывов.
  2. Нанесение на поверхность проверяемого соединения порошка, эмульсии или суспензии.
  3. Осмотр и выявление участков, в которых имеются дефекты.
  4. Размагничивание поверхности.

Наиболее достоверные результаты можно получить при использовании сухого порошка. Чтобы правильно оценить чувствительность порошка пользуются контрольными образцами. Допускается использование различных видов дефектоскопов: стационарных, мобильных, переносных, передвижных.

Магнитографический

Магнитная дефектоскопия относится к неразрушающим видам проверки сварочных швов. Суть метода заключается в том, что происходит выявление магнитных потоков, которые появились в намагниченных изделиях при наличии дефектов.

Для осуществления этого метода производится намагничивание исследуемой поверхности вместе с прижатым к ней с помощью эластичной ленты магнитоносителем. Одновременно осуществляется запись процесса на магнитную ленту. Информация о магнитном рельефе с ленты считывается специальными устройствами, являющимися составными частями дефектоскопов.

Наиболее часто этот метод находит применение для контроля сварных соединений трубопроводов. Главное преимущество этого метода по сравнению с магнитопорошковым способом — более высокая производительность.

Индукционный контроль

Отличие этого метода от предыдущих — наличие индукционных катушек, с помощью которых происходит образование электродвижущей силы. Для фиксации сигнала индукционную катушку необходимо соединить с аппаратом, осуществляющим регистрацию. В качестве него могут использоваться гальванометр или сигнальная лампа.

Контроль осуществляется при перемещении сварного соединения вдоль индукционной катушки. Передвижение может быть также осуществлено движением дефектометра вдоль соединения. Когда наступит момент пересечения индукционной катушки с местом, в котором находится дефект, то вследствие изменения в этом месте магнитного потока появляется электродвижущая сила. Индукционный ток поступает на регистрационный прибор.

Область применения

Ультразвуковая сварка нашла достаточно широкое применение для соединения тонких деталей из однородных и разнородных материалов в приборостроении и радиоэлектронной промышленности. В дальнейшем можно ожидать, что этот метод будет использован при сварке металлов, образующих хрупкие интерметаллические соединения, для приварки тонких обшивок к несущей конструкции (в авиационной промышленности, автомобилестроении и ряде других отраслей промышленности).

По мере совершенствования технологического процесса и оборудования область применения ультразвуковой сварки будет непрерывно расширяться.

Ультразвуковую сварку применяют для соединения многих металлов. Наиболее легко свариваются пластичные металлы (алюминий, медь и их сплавы, серебро, никель и т.п.) как между собою, так и с твердыми малопластичными материалами.

Металлические детали могут свариваться с керамикой, стеклом, полупроводниковыми материалами (кремний, германий). Успешно свариваются тугоплавкие металлы: вольфрам, ниобий, тантал, цирконий, молибден. Можно сваривать заготовки через прослойку из третьего металла, например сталь со сталью через алюминий, а также заготовки покрытые оксидами, лаками, полимерами и т.п. Используется УЗС также для соединения пластических масс.

Качество соединений при шовной сварке определяется теми же параметрами, что и при точечной, лишь вместо времени сварки вводится скорость движения детали. При правильно выбранных режимах шовной сварки разрушающее усилие сварного соединения выше чем основного металла.

См. также:

Ультразвуковая сварка термопластических материалов

Импульсный паяльник: устройство прибора

Импульсный паяльник необходим для монтажа (демонтажа) элементов электротехнических и электронных изделий. Нагревательным элементом является жало, которое изготовлено из медной проволоки (диаметр 1−3 мм) с покрытием иными металлами. Разогрев жала происходит за счет пропускания через него тока низкого напряжения. Паяльник потребляет немного электроэнергии, т. к. ток через жало проходит исключительно во время пайки. Устройство имеет преобразователь сетевого напряжения с частотой 18−40 кГц. Вторичная (силовая) обмотка соединяется с токосъемниками жала.

Основное отличие импульсного от обычного паяльника — то, что его не нужно всегда держать включенным для поддержания температуры. Нагревание жала осуществляется в течение нескольких секунд. Вот именно из-за этого устройство большую часть времени не расходует электричество.

Разновидности паяльников:

  1. Индукционный;
  2. Керамический;
  3. Импульсный;
  4. Аккумуляторный.

Ультразвуковая сварка полистирола

Ультразвуковую сварку изделий из полистирола применяют для изготовления различных контейнеров и сосудов, игрушек, спортивных товаров, а также для упаковки пищевых продуктов, медикаментов, косметики и т. д. В зависимости от формы изделия и свойств материала применяют контактную и передаточную сварку или комбинацию этих методов. Каждый из выпускаемых в настоящее время полистиролов (блочный, суспензионный, эмульсионный и ударопрочный) имеет различную способность свариваться — от наилучшей у блочного до наихудшей у ударопрочного полистирола.

При сварке изделий из полистирола одним из важных факторов, влияющих на процесс формирования сварных швов, является качество соединяемых поверхностей. Хорошая геометрическая форма и правильная подготовка поверхностей не только облегчает сварку, но и способствуют повышению прочности шва, увеличивают производительность процесса и позволяют строго фиксировать одну часть свариваемого изделия относительно другой его части.

Разделки кромок могут различаться по форме, по в основном одна из стыкуемых деталей должна иметь выступ, входящий по всей длине в соответствующий паз другой детали (рис. 20). Стыкуемые детали должны обладать наименьшей контактной поверхностью; поэтому паз выполняют плоским, а выступ — острым. Острие выступа должно контактировать с соединяемой поверхностью на очень небольшой площади, которая сводится почти к линии. Это способствует концентрации механической энергии на выступе, ускоряет процесс нагрева и сварки пластмасс.

Наилучшей является V-образная разделка свариваемых кромок, которая применяется для соединения деталей, показанных на рис. 20, а. На верхней детали делается V-образный выступ, а на нижней — V-образный паз. Высота выступа должна быть больше, чем глубина паза на 0,05—0,030 мм. При таком типе соединений достигается лучшая текучесть разогретого материала под действием давления и шов имеет хороший внешний вид.

При сварке соединений необходимо предусматривать допуски на текучесть размягченного полимера, который выдавливается из зоны шва, образуя грат. Если грат нежелателен, используют специальные конструкции шва, чтобы избежать выплесков полимера (см. рис. 20, 6 и в). Доведенный до вязкотекучего состояния полимер должен соединять две стыкуемые поверхности, заполняя зазор в несколько десятых долей миллиметра.

Рис. 20. Типы разделки кромок свариваемых поверхностей изделия.

Линия наплыва вдоль шва и выход наплыва за пределы шва свидетельствуют о том, что сварка произошла, В тех случаях, когда требуется герметичность изделия, необходимо, чтобы сварные детали имели линию наплыва. Однако линия наплыва большей частью ухудшает внешний вид изделия, поэтому ее следует избегать в особенности на полированных поверхностях.

Улучшение внешнего вида достигается ступенчатой конструкцией рабочей части волновода, при этом выступ изготовляют так, чтобы наплыв образовывался на внутренней стороне изделия. Малогабаритные детали несложной формы свариваются за один контакт волновода с изделием, причем волновод устанавливается перпендикулярно к свариваемым поверхностям по оси симметрии соединения. Если деталь сложная и длина сварного шва значительная, то количество точек и место введения ультразвуковых колебаний определяются экспериментально.

На свариваемость жестких пластмасс большое влияние оказывают условия хранения соединяемых деталей. Длительное хранение деталей до сварки приводит к уменьшению прочности сварного соединения. Особенно сильно уменьшается прочность соединения при сварке деталей, прошедших длительное хранение в атмосферных условиях. Таким образом, для получения качественных сварных соединений сварку необходимо производить либо сразу же после отливки деталей, либо хранить литые детали в темных холодных помещениях. Хранение деталей в атмосферных условиях при наличии солнечной радиации недопустимо.

Применение ультразвука для сварки деталей детских игрушек из полистирола позволило полностью исключить процесс склеивания дихлорэтаном, толуолом и другими растворителями, применение которых приводит к значительной загазованности воздушной среды. Использование ультразвуковой сварки повышает производительность труда и культуру производства.

Преимущества ультразвуковой сварки

Большой мировой опыт в применении ультразвуковой сварки позволяет выделить
ряд преимуществ, характерных для этого процесса. Выделим основные из них:

1. Процесс сварки происходит при твёрдом состоянии металла без сильного нагрева
сварного соединения. Благодаря этому, появляется возможность сваривания химически
активных металлов, а также разнородных материалов, которые склонны к образованию
хрупких соединений в результате нагрева.

2. При помощи УЗС возможно получить сварные соединения металлов, которые сложно
получить другими способами сварки в силу экономических и технологических ограничений,
например, сварку
меди или сварку
алюминия.

3. Данный вид сварки позволяет сваривать между собой тонкие и сверхтонкие элементы
(сварка пакетов из фольги), а также приваривать их к элементам большой толщины.
При этом, толщина последних практически не ограничена.

4. При УЗС металлов нет высоких требований к чистоте свариваемых поверхностей,
что во многих случаях позволяет производить сварку поверхностей, с имеющимися
на них оксидными плёнками, а также сварку тех деталей, на соединяемых поверхностях
которых имеются различные изоляционные плёнки.

5. Поверхности соединяемых деталей в зоне стыка не подвергаются сильной деформации
из-за малой величины сварочного усилия.

6. Установки для УЗС металлов имеют несложную конструкцию и обладают небольшой
мощностью.

7. Процесс ультразвуковой сварки можно легко автоматизировать.

8. Данный вид сварки очень выгоден в плане экологии и гигиены.

Получение и свойства ультразвуковых колебаний

Ультразвуковые колебания, называемые также акустическими волнами с частотой,
превышающей 20кГц. Они представляют собой механические колебания, которые способны
распространяться в упругих средах. В дефектоскопии используется диапазон частот
0,5-10МГц.

При распространении упругих волн в металле частицы металла колеблются относительно
точки равновесия. Расстояние между двумя частицами металла, колеблющимися в
одинаковой фазе, будет являться длиной ультразвуковой волны. Длина волны L связана
со скоростью её распространения c и с частотой колебаний f. Эта зависимость
выражается формулой: L=c/f.

Скорость распространения акустической волны зависит от физических свойств среды
и от типа волны. Скорость продольной волны примерно в 2 раза выше, чем скорость
поперечной.

Углы направления ультразвуковых колебаний

При наклонном падении продольной акустической волны на границу раздела двух
сред 1 и 2 (см. рисунок ниже), вместе с отражением возникает явление преломления
и трансформации ультразвуковой волны. Проявляются преломлённые и отражённые
продольные волны, а также сдвиговые поперечные волны.

На схеме а) показано, что падающая под углом β волна Сl1 разделяется на преломлённую
Сl2 и сдвиговую Сt2, которые распространяются в металле. Отражённая волна на
рисунке не показана. При определённом критическом значении угла падения β= βкр1,
преломлённая продольная волна перестанет проникать вглубь металла и будет распространяться
только по её поверхности (схема б) на рисунке выше). Дальнейшее увеличение угла
падения до βкр2. приведёт к тому, что сдвиговая волна будет распространяться
только на поверхности металла (схема в) на рисунке). Такое явление широко используется
на практике при ультразвуковой дефектоскопии сварных соединений для генерирования
в контролируемых сварных швах акустических волн определённого типа.

Технология ультразвуковой сварки металлов

Технологический процесс сварки металлов ультразвуком представляет собой ряд
последовательно выполняемых операций, главными из которых можно выделить: подготовка
соединяемых деталей, их сборка, прихватка, сварка и правка. В каждом отдельном
случае объём работ по каждой из операций может существенно различаться.

Подготовка свариваемых поверхностей

Результаты, полученные на практике, показывают, что влияние оксидных плёнок
на сварных кромках почти не влияет на прочность сварного соединения при ультразвуковой
сварке. Поэтому, можно получить качественное
сварное соединение при УЗС даже без предварительной обработки свариваемых
участков.

Но, результаты некоторых отдельных исследований говорят о том, что целесообразнее
будет удалять оксидные плёнки с соединяемых поверхностей, т.к. они могут снизить
качество сварного соединения, а в ряде случаев и вовсе технологический эффект
не может быть достигнут. Для подготовки поверхностей под УЗС хорошо подходит
обезжиривающая обработка.

Выбор режимов сварки

Главными показателями режима ультразвуковой сварки являются частота и амплитуда
колебаний сварочного наконечника, величина усилия и продолжительность процесса.

Амплитуда является важнейшим параметром, от него зависит эффективность удаления
оксидных плёнок, нагрев, а также зоны пластической деформации. Амплитуду назначают
исходя из предела текучести и твёрдости свариваемых материалов, толщины свариваемых
элементов и от того, очищались ли сварные кромки от оксидных плёнок, или нет.
Чем выше твёрдость, предел текучести и толщина свариваемых материалов, тем выше
должна быть амплитуда колебаний. В большинстве случаев, она находится в диапазоне
0,5-50мкм.

Величина сварочного усилия определяет эффективность передачи ультразвуковых
волн и способствует возникновению пластической деформации в зоне сварки. Чем
выше твёрдость, предел текучести и толщина свариваемых элементов, тем выше должно
быть сварочное усилие. При этом усилие напрямую связано с величиной амплитуды
колебаний и при увеличении амплитуды, усилие необходимо снижать. При соединении
элементов приборов и микросхем усилие составляет от десятых долей до нескольких
ньютонов, а при сваривании относительно толстых листов усилие может составлять
до 10 000Н. Величина усилия в процессе сварки может оставаться постоянной или
же изменяться по определённой программе.

Продолжительность процесса зависит от амплитуды колебаний, усилия сварки, толщины
свариваемого металла и его физических свойств. Зависимость времени от амплитуды
и свойств такая же, как и зависимость усилия сварки.

Сварка пластмасс

Оборудование для ультразвуковой сварки пластмасс

В настоящее время действуют два отраслевых стандарта – ОСТ 16
0.539.080-79 и ОСТ 0.800.875-81. Первый документ устанавливает единые требования к разработке, изготовлению, испытанию и приемке машин для УЗС, а
второй устанавливает рациональную номенклатуру машин (их основные параметры и размеры).

На основе тщательного анализа структуры технологического оборудования разработана унифицированная терминология для основных узлов сварочных машин, к которым относятся:

сварочн ый узел (акустическая система), включающий в себя преобразователь энергии, трансформатор упругих колебаний, волновод;

  • механизм давления, обеспечивающий сжатие свариваемого материала между волноводом и опорой;
  • вспомогательные устройства, обеспечивающие транспортирование
    материала;
  • станина, предназначенная для размещения названных выше элементов и
    узлов;
  • блок управления, служащий для контроля и управления процессом
    сварки.

Современные ультразвуковые сварочные машины можно классифицировать по следующим признакам:

  • по видам свариваемых соединений – на машины для точечной, многоточечной, контурно-рельефной, шовной и шовно-шаговой сварки. Первые
    три типа машин позволяют осуществлять прессовую контактную или передаточную сварку; последние два типа машин служат для получения непрерывных
    протяженных прямолинейных или криволинейных швов;
  • по степени автоматизации – на автоматы, полуавтоматы и машины
    с ручным управлением основными и вспомогательными операциями;
  • по назначению – универсальные машины общего назначения, позволяющие производить сварку изделий широкой номенклатуры, и специализированные машины;
  • по характеру установки машины – на стационарные и переносные;
    стационарными являются, как правило, машины для прессовой и шовной УЗС;
    к переносным машинам относятся, например, ручные пистолеты небольшой
    мощности;
  • по характеру взаимного перемещения свариваемого материала и
    волновода – на машины с подвижным и неподвижным акустическим узлом;
  • по способу создания статического давления – на машины, в которых давление осуществляется через волновод и через опору;
  • по количеству рабочих позиций – на одно-, двух- и многопозиционные; однопозиционные машины имеют одну рабочую позицию, на которой
    может осуществляться односторонняя или двусторонняя сварка; в многопозиционных машинах сварка изделий может производиться одновременно или поочередно с помощью нескольких акустических головок от одного или нескольких сварочных генераторов.

Промышленностью выпускается большое количество моделей машин для
ультразвуковой сварки, предназначенных для выполнения различных типов
сварных соединений деталей различной сложности и из различных материалов.

Процесс ультразвуковой сварки

Принципиальная схема сварки.

Суть процесса – действие на обе свариваемые поверхности механических колебаний высочайшей частоты в комбинации с умеренным сдавливанием. Механические колебания такой частоты образуются в результате магнитострикционного эффекта: некоторые металлические сплавы меняют свои размеры из-за действия переменного магнитного поля.

Никель и железнокобальтовые сплавы – лучшие ультразвуковые преобразователи, это хорошие магнитострикционные материалы. Изменение их размеров чрезвычайно мало, поэтому для концентрации энергии и увеличения амплитуды применяются специальные волноводы специфической суживающейся формы.

Эти волноводы имеют средний коэффициент усилия 5,0 с амплитудой примерно 20 – 30 мкм при условии холостого хода. А такой амплитуды колебаний с лихвой хватает для качественного соединения: по многим опытам экспериментальных ультразвуковых процессов даже колебания в 1,3 мкм дают вполне надежный сварочный шов.

В него входят следующие технические компоненты:

  • волновод;
  • опора в виде маятника;
  • диафрагма;
  • подвод тока для преобразователя;
  • привод механического сжатия;
  • система водяного охлаждения в виде кожуха.

Сама же установка для УЗС состоит из следующих составных частей:

  • магнитострикционный преобразователь;
  • сам волновод;
  • ролик для сваривания;
  • токоподвод;
  • водоподвод для охлаждения;
  • прижимной ролик;
  • защитный кожух преобразователя;
  • механический привод вращения.


Схема контактной ультразвуковой сварки.

Ток высокой частоты поступает от ультразвукового генератора на обмотку магнитострикционного преобразователя. Волновод со специальным рабочим выступом усиливает и передает механические колебания к наконечнику сварочного инструмента.

Выступ на волноводе во время процесса принимает высокочастотные колебания, которые по своей природе являются механическими горизонтальными движениями высокой частоты.

Длительность сварочного процесса напрямую зависит от толщины и природы свариваемого металла. Если край металла тонкий, образование шва занимает буквально доли секунды.

Высокочастотные колебания наконечника сварочного инструмента имеют свойство поляризоваться в одной плоскости с поверхностью пластины сверху. Колебания передаются на пластины и опоры с нужными амплитудами с учетом того, что на всех точках передачи энергия колебаний гасится.

Сам процесс соединения начинается с момента соприкосновения микронеровностей поверхностей, которые соединяются, в результате чего происходит их деформация. Как только включаются ультразвуковые колебания, эти микронеровности дополнительно сдвигаются, появляются зоны схватывания.

Если с самого начала ультразвукового воздействия на соединяемых поверхностях возникает трение по сухому типу, разрушающее окисные пленки из жидкостей и газов, то впоследствии сухое трение превращается в чистое трение, которое образовывает и укрепляет зоны схватывания.

Дополнительному укреплению схватывания способствует характер колебаний: возвратно-поступательные движения при малой амплитуде.

В рабочей зоне при УЗС образуется тепло вследствие процесса трения и деформации на соединяемых поверхностях. Температура в рабочей зоне зависит от характеристик металла: его твердости, теплопроводности и теплоемкости.

Соблюдение режима технологии УЗС дает сварочный шов, равный по своей прочности основному металлу.

+ и —

Рассмотрим достоинства и недостатки ультразвуковой сварки пластмасс. К числу первых относятся:

  1. Не нужно приобретать расходные материалы, растворители или клей, из-за чего снижается риск неблагоприятного воздействия на организм мастера.
  2. Возможность соединить пластмассы любого состава.
  3. При правильном выставлении режима сварки шов получается почти что невидимым.
  4. Высокая производительность при довольно скромных затратах.
  5. Швы получаются устойчивыми и герметичными на деталях любого состава.
  6. Можно не проводить предварительную очистку поверхностей конструкций.
  7. Шов в принципе не может перегреться, так как тепло фокусируется точечно.
  8. При работе не образуются радиопомехи по причине того, что напряжение не достигает поверхности деталей.
  9. Сварочные работы не требуют особых условий. Достаточно обеспечения электричеством.
  10. Особенности оборудования позволяют проводить работы разного масштаба, от мелкого ремонта крошечных деталей и до непрерывной сваркой промышленных конструкций.
  11. Возможность осуществления нескольких задач одновременно. К примеру, сварка пластмасс + покрытие полимерным напылением или сварка + резка.

Несмотря на невероятное количество достоинств, способ сварки далеко не идеален. На это есть свои причины:

  1. Нет унифицированного метода проверки качества сварного шва, что чревато получением некачественного соединения.
  2. Низкая мощность работы предполагает необходимость подачи энергии в двустороннем режиме.

Да, минусов у такого метода немного. Однако все преимущества работают только тогда, когда выбран оптимальный режим ультразвуковой сварки. Поэтому новичку рекомендуется приобретать аппарат с автоматическим выстраиванием режима.

В помощь начинающим мастерам, которые собираются вручную настраивать режим, приведена информация об оптимальных параметрах в удобном формате таблицы.

По мере накопления опыта в деле ультразвуковой сварки можно будет выставлять режим без её помощи.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации