Андрей Смирнов
Время чтения: ~14 мин.
Просмотров: 0

Мартенсит

Мартенсит — закалка

Мартенсит закалки — неравновесная ( метастабильная) структура, сохраняющаяся благодаря малой подвижности атомов при низких температурах. При закалке в изделиях всегда возникают большие внутренние напряжения ввиду объемных изменений. Для получения более равновесного состояния после закалки изделия подвергают отпуску, нагревая до температур ниже Лсг Изучая процессы, происходящие в закаленной стали при нагреве, наиболее часто пользуются прибором — дилатометром. В прибор помещают два одинаковых по размерам образца из одной и той же стали. Один из образцов находится в отожженном, другой — в закаленном состояниях. При нагревании до температур ниже Ас1 в отожженном образце никаких превращений не происходит, его размеры изменяются только за счет теплового расширения, а в закаленном образце совершаются и структурные превращения, сопровождающиеся изменениями объема.

Мартенсит закалки — неравновесная ( метастабильная) структура, сохраняющаяся благодаря малой подвижности атомов при низких температурах. При закалке в — изделиях всегда возникают большие внутренние напряжения ввиду объемных изменений. Для получения более равновесного состояния после закалки изделия подвергают отпуску, нагревая до температур ниже Асг Изучая процессы, происходящие в закаленной стали при нагреве, наиболее часто пользуются прибором — дилатометром. В прибор помещают два одинаковых по размерам образца из одной и той же стали. Один рз образцов находится в отожженном, другой — в закаленном Достояниях.

Мартенсит закалки представляет собой нестабильный пересыщенный твердый раствор углерода в искаженной и сильно напряженной атомной решетке а-железа.

Превращение мартенсита закалки в мартенсит отпуска способствует стабилизации размеров детали, что необходимо для измерительного инструмента, изготовляемого из инструментальной стали. Этому инструменту также дают низкий отпуск.

При этом снижаются внутренние напряжения, мартенсит закалки переводится в отпущенный мартенсит, повышается прочность и немного улучшается вязкость без заметного снижения твердости. Однако такое изделие ( если оно не имеет вязкой сердцевины) не выдерживает значительных динамических нагрузок.

При этом снижаются закалочные макронапряжения, мартенсит закалки переводится в отпущенный мар-генеит, повышается прочность и немного улучшается вязкость без заметного снижения твердости. Закаленная сталь ( 0 6 — — 1 3 % С) после низкого отпуска сохраняет твердость в пределах HRC 58 — 63, а следовательно, высокую износостойкость. Однако такое изделие ( если оно не имеет вязкой сердцевины) не выдерживает значительных динамических нагрузок.

После низкого отпуска снижаются закалочные напряжения, мартенсит закалки ( рис. 3.12, 6) превращается в мартенсит отпуска ( рис. 3.12, в), повышается прочность и несколько — вязкость.

Белые слои имеют более высокую, чем мартенсит закалки микротвердость. Увеличение содержания углерода в стали, наличие в ней небольших количеств хрома, молибдена, ванадия, вольфрама и никеля в результате легирования мартенсита и карбидов и измельчения структуры повышают микротвердость белых слоев.

Минимум теплоемкости при 180 С связан с превращением мартенсита закалки в мартенсит отпуска. При температуре 250 — 300 С происходит преимущественно превращение остаточного аустенита и при температурах 350 — 450 С идет коагуляция карбидов.

В результате отпуска при 200 С происходит превращение мартенсита закалки в мартенсит отпуска, снижение внутренних напряжений и хрупкости; твердость остается почти без изменений.

В результате отпуска при 200 С происходит превращение мартенсита закалки в мартенсит отпуска, снижение внутренних напряжений и хрупкости; твердость остается почти без изменений.

Кривые влияния температуры отпуска на изменение твердости закаленных углеродистых сталей с различным содержанием углерода.

В результате отпуска при 200 С происходят превращение мартенсита закалки в мартенсит отпуска, снижение внутренних напряжений и хрупкости; твердость остается почти без изменений.

В результате отпуска в зависимости от температуры нагрева неустойчивая структура мартенсита закалки вследствие диффузионного перераспределения углерода превращается в более устойчивые структуры — мартенсит отпуска, троостит, сорбит и перлит.

Тепловые эффекты в сталях.| Зависимость теплоемкости стали от температуры. а — после закалки. б — после отпуска.| Зависимость теплоемкости сплава Са — от температуры.

Виды отпуска стали

Главный технический параметр ОС — это температура нагрева. Различают 3 типа ОС — высокий, средний и низкий. Конечно, высокотемпературный отпуск является оптимальным средством обработки, поскольку чем выше температура нагрева, тем более активно будет происходить рекристаллизация металла. Однако низко- и среднетемпературные способы обработки также имеют практическую пользу, которую не стоит недооценивать. Ниже мы рассмотрим каждый тип ОС по отдельности.

Высокий

Высокий отпуск стали — это вариант отпускной обработки при температуре от 500 до 700 градусов. Данный способ является самым эффективным, поскольку при таком нагреве происходит полигонизация и рекристаллизация материала, что позволяет устранить все напряжения внутри металла.  Обычно длится от 2 до 3 часов. В случае обработки сложных конструкций рекомендованное время может увеличиваться до 6 часов.

Главный недостаток высокотемпературного отпуска — это небольшое снижение прочности материала. Поэтому методика не годится для обработки деталей, которые во время эксплуатации будут испытывать сверхвысокую нагрузку

Высокотемпературная методика распространяется на все виды стали, однако обратите внимание, что в случае некоторых легированных сплавов во время обработки может возникнуть так называемая обратимая высокотемпературная хрупкость

Средний

Основная особенность среднего отпуска — активная диффузия углерода без полигонизации и рекристаллизации сплава. В случае среднетемпературной обработки улучшается упругость материала, повышается его релаксационная стойкость. Температура отпуска стали в данном случае находится в пределах от 350 до 500 градусов. Средний срок проведения обработки — 2-4 часа. Оптимальная среда — маслянистая или щелочная. Средняя обработка хорошо подходит для прочных деталей сложной формы — рессоры, пружины, ударные конструкции. Однако на практике данная технология используется редко в связи с рядом ограничений:

  • В температурной диапазоне от 250 до 300 градусов находится так называемый островок хрупкости первого рода, которого следует избегать. Одновременно с этим при температуре выше 500 градусов находится другой островок хрупкости второго рода (его тоже рекомендуется избегать). Об особенностях этих островков мы расскажем ниже. А небольшое отклонение температуры в большую или меньшую сторону во время отпуска может привести к фатальным последствиям.
  • Методика не имеет преимуществ в сравнении с альтернативными технологиями (низкой и высокой). Одновременно с этим слабые печи для обработки обычно не могут нагревать рабочую среду до таких температур, а более сильные печи могут нагреваться до более высоких температур, что неудобно с практической точки зрения.

Низкий

Низкий отпуск стали — методика обработки стального сплава или изделия, при которой нагрев осуществляется до температуры от 100 до 250 градусов. Срок обработки обычно составляет 1-3 часа в зависимости от типа детали, ее габаритов. Во время низкотемпературной обработки происходит диффузия частиц углеродистых компонентов без полигонизации и рекристаллизации атомной решетки. Это позволяет повысить некоторые физические характеристики материала — прочность, пластичность, твердость, химическую инертность.

Низкий отпуск — универсальная технология, однако по факту ее применяют в основном для отпуска изделий из низколегированных и высокоуглеродистых сталей (ножи, посуда, простые детали). Также нужно избегать нагрева материала выше температуры 250 градусов (в противном случае он попадет в островок хрупкости первого рода, что чревато необратимой порчей металла).

Сводная таблица

Тип отпускаВремяТемпература отпуска сталиКраткие особенности
Низкий1-3 часаОт 100 до 250 градусовПроисходит только частичная диффузия углерода. Следует избегать перегрева материала выше отметки 250 градусов.
Средний2-4 часаОт 350 до 500 градусовПроисходит полная диффузия углерода без полигонизации, рекристаллизации. На практике используется редко из-за ряда ограничений.
Высокий2-3 часаОт 500 до 700 градусовПроисходит полная диффузия углерода, полигонизация, рекристаллизация. Немного снижает прочность материала, поэтому не применяется для сверхпрочных деталей.

Отпускная хрупкость

Параллельно с увеличением значения температуры отпуска, возрастает ударная вязкость, охлаждение не воздействует на характеристики. Для отдельных марок стали, характерно понижение указанного показателя, дефект носит название «отпускная хрупкость».

Отмечается два вида явления, каждое из которых выделяется спецификой формирования, последующим результатом

Обратите внимание на особенности каждого из них, от этого зависит разработка технологического процесса создания заготовки

Отпускная хрупкость 1 рода

Возникает, когда область температур проходит значение 300 ºC. Это не связано параметрами охлаждения заготовки, на заключительном этапе обработки. Подобное проявление вызвано разницей уровней превращения мартенсита в создаваемой заготовке. Измеренное значение хрупкости необратимо, даже при нагреве этого элемента повторно, оно не будет проявляться, следовательно, структура сохраняется в стабильном состоянии.

Отпускная хрупкость 2 рода

Явление проявляется в структуре легированных марок стали, когда осуществляется медленное их охлаждение. Устанавливается температура 450-650 ºC. Когда при отливке заготовки имеет место высокий отпуск, по границам металла отмечается выделение дисперсных включений карбидов. При рассмотрении, приграничная зона объединяется, благодаря наличию легирующих компонентов.

Когда осуществляется плавное охлаждение, формируется диффузия, она проявляется острее к границам зерна. Части структуры в приграничной области обогащаются фосфором. Это проявление позволит понизить уровень ударной вязкости, а также прочность. Отмечено как обратимый процесс, при вторичном нагреве, плавном охлаждении до нужного значения, если установлен опасный для показателей интервал, дефект имеет все шансы возникнуть заново. Стали, имеющие склонность к формированию в структуре хрупкости данного рода, не могут нагреваться до 650 ºC.

Принимается решение провести отпуск того или иного вида, в зависимости от характеристик заготовки, эксплуатационных показателей, а также потребностей производственного процесса

Важно соблюсти температуру, в дальнейшем осуществлять естественное охлаждение заготовки, что позволит добиться внушительного результата. В процессе нет ничего сложного, если заблаговременно проработать карту технологических операций

Рейтинг: /5 —
голосов

Режимы закалки

Поскольку при закалке растут не только прочностные характеристики, но и хрупкость, технология правильного ведения процесса состоит в том, чтобы, с одной стороны, зафиксировать так можно большее количество остающегося аустенита, а другой стороны, снизить негативные проявления таких изменений

Особенно это важно для деталей сложной формы, где уже имеются концентраторы напряжений

Задача решается ускоренным охлаждением деталей, нагретых выше температуры аустенитного превращения на 30…50 °С, с последующим отпуском. В качестве охлаждающей среды используется вода или масло, а итогом такого охлаждения является появление в микроструктуре мартенсита – пересыщенного твёрдого раствора углерода в железе. Мартенсит — значительно более твердая структура, с иным типом кристаллической решётки и игольчатой структурой кристаллов. Он считается так называемой метастабильной фазой, которая в обычных условиях существовать не может.

Закалка подразделяется на следующие виды:

  1. Изотермическую, при которой выполняется непрерывное охлаждение в масле, либо в расплавах солей хлоридов бария и натрия. В результате аустенитное превращение протекает полностью, а в закалённом продукте исключаются трещинообразование и коробление. Изотермическая закалка и отпуск обязательны для конструкций сложной формы и значительных габаритных размеров.
  2. Ступенчатую, при которой после закалки в ванне до окончания мартенситного превращения и выравнивания температурных перепадов по всему сечению, продукцию извлекают из закалочной ёмкости, и в дальнейшем охлаждают уже на спокойном воздухе.
  3. Сквозную, применяемую для деталей небольших размеров. В результате получается наивысшая равномерность механических свойств.

Три вида отпуска после закалки

Особенности закалки инструментальных сталей заключаются в том, что они работают при гораздо повышенных эксплуатационных нагрузках: например, для тяжелонагруженного инструмента они достигают 3000…3500 МПа

Поэтому крайне важно обеспечить удовлетворительное сочетание всех прочностных параметров. Принципиальным отличием всех режимов закалки инструментальных сталей является обязательность отпуска непосредственно после закалки

Наилучший результат дают следующие режимы закалки:

  1. Изотермическая.
  2. Закалка с самопроизвольным отпуском, при которой нагретую деталь кратковременно извлекают из охлаждающей среды (масла), очищают от образовавшейся плёнки окислов, после чего вновь опускают в масляную ванну.
  3. Чистая, при которой нагрев ведут в печах с контролируемой атмосферой, свободной от окислов.
  4. Светлая, когда продукция нагревается в щелочных расплавах.

https://youtube.com/watch?v=I-br0B8ocpI

Нагрев под закалку проводят преимущественно в электропечах или в газовых печах, атмосфера которых содержит инертный газ. Так обеспечивается качество и полнота мартенситного превращения, исключаются неравномерность свойств и поверхностные дефекты.

Описание процесса

Отпуск стали (ОС) — это разновидность термической обработки, при которой происходит постепенный нагрев металла с последующим его остыванием. В большинстве случаев отпускную процедуру выполняют на заключительном этапе сразу же после закалки. ОС может выполняться как до, так и после формирования детали из стального полуфабриката. Позволяет устранить внутренние напряжения внутри металла, которые негативно влияют на его физическую структуру, свойства.

Внутренние напряжения на химическом уровне — это нарушения кристаллической структуры металла. Из-за них происходит неравномерное распределение углерода, легирующих добавок по металлическому сплаву. Отпуск позволяет перераспределить эти элементы более равномерно. Это улучшает физико-химические свойства материала (пластичность, прочность, сохранение формы, химическая инертность). Нагрев осуществляется с помощью специальных печей в защитной среде (масляные, селитровые или щелочные ванны). Способ охлаждения деталей после нагрева — воздушный (обычно) или жидкостной (редко).

Качество отпуска стали зависит от следующих физических параметров термической процедуры:

  • Температура нагрева. ОС может выполняться при температурах от 100 до 700 градусов, а чем выше будет температура нагрева, тем выше лучше будет качество обработки. Объясняется эта зависимость тем, что при более высоких температурах происходит более глубокое изменение структуры кристаллической решетки. В основном за счет процессов полигонизации, рекристаллизации.
  • Длительность нагрева. Длительность ОС обычно составляет от 1 до 3 часов, хотя существуют и более длительные форматы. Все основные процессы в материале проходят в первые 20-40 минут.  Дополнительная выдержка нужна для равномерного распределения атомов углерода, железа, легирующих добавок по всей толщине материала.
  • Скорость остывания. Здесь правило предельно простое — чем медленнее будет проходить остывание, тем выше будет качество материала. Чтобы замедлить остывание, металлурги используют различные уловки, хитрости. Главная хитрость — это помещение материала в масляную, селитровую или щелочную среду, которая замедляет остывание материала. Теоретически остывание можно выполнять и без применения жидкостных сред, однако скорость остывания будет высокой, что негативно скажется на качестве ОС.

Структура — троостит

При твердости ниже HRC 50 большей износостойкостью обладает сталь со структурой троостита закалки, полученной при охлаждении на воздухе или при изотермической закалке в расплавленной стали. Сопротивление абразивному износу уменьшается при увеличении в структуре остаточного аустенита.

При твердости ниже HRC 50 лучшей износостойкостью обладает сталь со структурой троостита закалки, полученной при охлаждении на воздухе или при изотермической закалке в расплавленной соли. Сопротивление абразивному износу уменьшается при увеличении в структуре остаточного аустенита.

МПа) и твердости ( 40 — 50 HRC) со структурой троостита ( см. рис. 9.15) относятся к материалам функционального назначения — рессорно-пружинным сталям. Циклические нагрузки в них вызывают слабое деформационное упрочнение поверхности и развитие ее усталостной повреждаемости. Для того чтобы обеспечить более высокую циклическую прочность этих сталей, необходимо уменьшить их чувствительность к концентраторам напряжений.

При более высокой прочности ( ав1300 МПа) среднеуглеродистые стали со структурой троостита отпуска или мартенсита характеризуются пониженным сопротивлением распространению трещины. Кроме того, низкая пластичность сталей высокой прочности повышает их чувствительность к надрезам в наиболее напряженных зонах деталей. В результате в местах концентрации напряжений зарождаются усталостные трещины, быстро приводящие к поломке деталей. Вследствие повышенной чувствительности к надрезу происходит значительное рассеяние значений а и уменьшение а до ( 0 4 0 3) ав. Несущая способность деталей из легированных сталей в высокопрочном состоянии может быть ниже, чем горячекатаных углеродистых сталей.

В результате этих превращений закаленная сталь, нагретая до 350 — 500, получает структуру троостита отпуска ( фиг.

Участок, нагретый при сварке до температуры ниже критической, будет участком отпуска со структурой троостита или сорбита.

Участок, нагретый при сварке до температуры ниже критической, будет участком отпуска со структурой троостита или сорбита. Зона термического влияния у мартенсит.

Классификация перлита по дисперсности ( Х500.

Оценка типа матрицы по ГОСТ 3443 — 77 производится шестью баллами по рис. 1.19 Необходимость оценки структур троостита, бейнита, мартенсита оговаривается в заказе. Если в структуре чугуна имеется металлическая основа различных типов, то следует визуально оценивать процентную долю каждого типа и указывать ее при обозначении структуры.

Средний отпуск заключается в нагреве стали до температуры 350 — 500 С и охлаждении для получения структуры троостита отпуска. В результате среднего отпуска твердость закаленной стали снижается до HRC 40 — 50, тогда как предел упругости, имеющий после закалки стали наименьшее значение, достигает максимальной величины. Поэтому среднему отпуску подвергают пружины, рессоры и другие упругие элементы.

Зоны поверхности, имеющие мартенситную структуру, окрашиваются в светлый цвет, а зоны, имеющие структуру троостита или сорбита — в темный. Наличие трооститной структуры свидетельствуют о недостаточном охлаждении при закалке.

Сталь в состоянии аустеннта, резко охлажденная до температуры 400 С и выдержанная при этой температуре, получает структуру троостита.

Присреднетемпературном ( среднем) отпуске сталь нагревают до температуры 350 — 500 С, в результате чего она приобретает структуру троостита отпуска или троостомартенсита. После такого отпуска сталь имеет высокие релаксационную стойкость, предел упругости и выносливость.

При отпуске мартенсит и остаточный аустенит полностью распадаются ( окончание второго превращения и третье превращение при отпуске) с образованием структуры троостита отпуска.

Сплавы № 16 ( УЗ 1X5), № 17 ( У29Х7) и № 18 ( У29Х10) имеют структуру троостита и ледебурита; по мере увеличения хрома происходит измельчение ледебуритной составляющей.

Что такое отпуск?

Отпуск металла — термический процесс, который применяется для всех закалённых деталей. Многие начинающие мастера не понимают, насколько для материала важна совокупность этапов термической обработки. Термообработка металлов позволяет улучшить характеристики металлической детали. В ходе подобной обработки изменяется структура стали. Из-за этого ухудшаются или улучшаются отдельные свойства материала.

Такая термообработка позволяет снять внутреннее напряжение, образующееся после закалки стали. Если этого не сделать материал будет хрупким и не выдержит серьёзных нагрузок. Помимо снятия внутренних напряжений, этот процесс увеличивает твердость стали. Это важная особенность при изготовлении инструментов и деталей для промышленного оборудования.

Температурный режим выбирают в зависимости от того, какую марку материала будут обрабатывать. Исходя из этого металл можно охлаждать в разных растворах:

  • в емкостях, заполненных расплавленной щелочью;
  • в ваннах, заполненных селитрой;
  • в емкостях с маслом или водой.

На производстве металлические детали охлаждают в печах. При этом на оборудование устанавливается система принудительной вентиляции.

ОТПУСК СТАЛИ ПРОСТОЙ СПОСОБ

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации