Андрей Смирнов
Время чтения: ~11 мин.
Просмотров: 0

Термопластичные полимеры

Детали и изделия из термопластов

Чаще всего термопласты применяются:

  • для создания бронежилетов и шлемов в военной промышленности;
  • подшипники, ролики, вкладыши и другие детали для промышленности;
  • в качестве изоляционных материалов в электротехнике;
  • в строительстве для защиты зданий и сооружений от коррозии, воды, для продления срока службы конструкций.
  • емкости для хранения агрессивных растворов, тара;
  • панели, буксировочные тросы в судостроении;
  • протезы — в медицине;
  • в криогенных технологиях и в атомной промышленности;
  • леска, каски создаются для спорта.

Как видно, применение материалов достаточно широко. Каждый из видов продукции имеет свои собственные технические характеристики, поэтому при изготовлении товаров под заказ следует ориентироваться на ГОСТы.

История

Исследование полимеров начало развиваться к 40 гг. XX в. и сформировалось в качестве самостоятельной научной области в середине столетия. Это было связано с развитием знаний о роли данных веществ в органическом мире и выяснением возможностей их применения в промышленности.

При этом цепные полимеры производили еще в начале XX столетия.

К середине века освоили выпуск электроизолирующих полимеров (поливинилхлорида и полистирола), плексигласа.

В начале второй половины столетия расширилось производство полимерных тканей за счет возврата выпускавшихся прежде материалов и появления новых вариантов. Среди них — хлопок, шерсть, шелк, лавсан. В тот же период, благодаря применению катализаторов, начали выпуск полиэтилена и полипропилена при малом давлении и кристаллизующихся стереорегулярных вариантов. Немного позже освоили массовый выпуск самых известных герметиков, пористых и адгезивных материалов, представленных полиуретанами, а также элементоорганических полимеров, отличающихся от органических аналогов большей эластичностью и термостойкостью (полисилоксаны).

В 60 — 70 гг. были созданы уникальные органические полимеры с ароматическими компонентами, характеризующиеся высокой термостойкостью и прочностью.

Производство органических полимеров интенсивно развивается и сейчас. Это обусловлено возможностью использования дешевых материалов, таких как уголь, попутные газы нефтепереработки и добычи и природные газы, в совокупности с водой и воздухом в виде исходного сырья для большинства из них.

Термопласты с частичной кристаллизацией

Данный тип полимерных материалов имеет в составе как участки с определенной структурой, так и неструктурированные. Структурированные участки макромолекул имеют название кристаллитов и в них плотность молекулярной структуры больше, чем в аморфных частях, так же как и сила физического соединения. К примеру, такой симметричной и длинной молекулярной цепью обладает полиэтилен с высокой плотностью. Чем больше будет кристаллизованных участков в полимере, тем менее прозрачным он будет. Для частично кристаллизованных термопластов температура эксплуатации обычно выше, чем значение стеклования, но переход в расплавленное состояние происходит очень резко без стадии повышенной эластичности. При остывании материал так же быстро застывает, но при этом количество участков с кристаллизацией увеличивается, поэтому он сильно деформируется и усаживается.

Свойства термопластичных полимеров в значительной степени зависит от длины молуекулы, химической структуры сегментов, уровня кристаллизации и взаимодействия молекул.

Термопластическое свойство

Термопластические свойства полимерам придают линейные молекулы.

Термопластические свойства поливинилхлорида позволяют формовать из него пленки методом термической обработки на вальцах с последующим каландрованием. Этот полимер обладает такой прочностью в относительно широком интервале температуры размягчения, что способен при вальцевании на горячих валках сниматься с них в виде пленки большей или меньшей толщины.

Учитывая термопластические свойства клея КС 609, были предприняты попытки увеличить его проникающую способность путем нагрева клея или металла, на который его наносили, до 0 — 80 С. Предварительный прогрев клея несколько увеличил плотность клеевого слоя, полностью устранив наличие пузырьков воздуха в клеевом валике.

При разветвлении полимеров эластические термопластические свойства становятся менее выраженными. При образовании сетчатой структуры термопластичность теряется. По мере уменьшения длины цепей в ячейках сеток утрачивается и эластичность полимеров, например при переходе от каучука к эбониту.

В связи с термопластическими свойствами силиконовых каучуков при высоких температурах целесообразно их применять для заливки течей в электровакуумных приборах.

Она основана на термопластическом свойстве винипласта спрессовывается в нагретом состоянии при определенном давлении. Этот способ является прогрессивным, но пока не нашел широкого применения.

Механизм для снятия фаски и резки листов.

Сварка термопластов основана на их термопластических свойствах — на способности переходить в вязкоте-кучее состояние при температуре 200 — 220 С.

Сварка пластмасс основана на их термопластических свойствах, на способности переходить в вязкоте-кучее состояние при температурах 200 — 250 С.

Свойства полихиноксалиновых пленок.

Это объясняется тем, что выше 400 С полимер проявляет термопластические свойства, а остатки крезола выполняют функцию пластификатора. Переработка препрегов осуществляется при 370 С. Давление в процессе прессования зависит от содержания остаточного растворителя. Последующую термообработку проводят в инертной среде в общей сложности в течение 40 ч в интервале температур от 205 до 400 С.

В противоположность нитратам целлюлозы ацетаты целлюлозы и их гомологи благодаря своим термопластическим свойствам могут даже без растворителей образовывать из расплава плоские листы при прессовании через щель; они могут даже просто сплавляться, если пропускать их, например, в виде мелкозернистой массы, помещенной на движущуюся стальную ленту , через электропечь.

Я -, Эр-лих И. М., Исследование водородных связей в уретановых полимерах с термопластическими свойствами, Высокомол.

Для особых целей могут служить также различные эластичные материалы, невулканизированные и обладающие поэтому термопластическими свойствами. Такие свойства имеет полиизобутилен.

Очевидной причиной этого является проведение экспериментов на воздухе, поскольку присутствие кислорода влияет существенно на термопластические свойства, особенно при исследовании углей в дробленом состоянии.

Применение

Благодаря названным выше параметрам, органические полимеры имеют обширную сферу применения. Так, сочетание большой прочности с небольшой плотностью позволяет получить материалы большой удельной прочности (ткани: кожа, шерсть, мех, хлопок и т. д.; пластмассы).

Помимо названных, из органических полимеров выпускают прочие материалы: резины, лакокрасочные материалы, клеи, электроизоляционные лаки, волокнистые и пленочные вещества, компаунды, связующие материалы (известь, цемент, глина). Их применяют для промышленных и бытовых нужд.

Крахмал также является органическим полимером

Однако органические полимеры обладают существенным практическим недостатком — старением. Под этим термином понимают изменение их характеристик и размеров в результате физико-химических преобразований, происходящих под воздействием различных факторов: истирания, нагрева, облучения и т. д. Старение происходит путем протекания определенных реакций в зависимости от вида материала и воздействующих факторов. Наиболее распространенной среди них является деструкция, подразумевающая формирование более низкомолекулярных веществ вследствие разрыва химической связи главной цепи. На основе причин деструкцию подразделяют на термическую, химическую, механическую, фотохимическую.

Особенности подвижности макромолекул полимеров при нагреве

Нагрев пластиков ведет к преобразованию их состояния за счет того, что повышение температуры увеличивает запас средней тепловой энергии макромолекул полимеров, следовательно, подвижность макромолекул повышается. С характеристикой подвижности макромолекул у полимеров связаны определенные особенности, которые мы рассмотрим в данной статье.

Гибкость макромолекул пластика
Молекулы полимеров связаны друг с другом очень сильно, поэтому при нагревании макромолекулы не разъединяются полностью и не могут независимо друг от друга двигаться. Полный разрыв соединений макромолекул пластика по всей длине возможен только при воздействии такого количества энергии, которое больше энергии хим. связей основной цепи. Это значит, что оторвать молекулы полимера друг от друга возможно только при полной деструкции химических связей. Однако, на помощь для перемещения молекул приходит такое их свойство как гибкость макромолекул полимера.

Гибкость молекулы полимера обуславливается ее большой длиной, которая может быть больше поперечника в тысячи раз. Свойство макромолекулы изгибаться можно сравнить с гибкостью длинной нити. Также дополнительная гибкость обеспечивается деформированием валентных углов и увеличением при нагреве межчастичных расстояний. Вращение частиц макромолекулы вокруг простых химических связей без их разрыва требует значительно меньших энергозатрат. Данное вращение называют конформацией.

Из-за теплового движения отдельных звеньев макромолекул полимеров и благодаря их высокой гибкости, относительное перемещение молекул пластика происходит частями.

Гибкость макромолекул измеряется в величине ее частицы, которая при определенных условиях внешнего воздействия ведет себя как отдельная кинетическая единица и двигается независимо от других сегментов.

Чем больше молекулярная масса полимера, тем больше будет гибкость цепи, а увеличение молекулярных связей наоборот гибкость уменьшает. Если взять две молекулы полимера с равной молекулярной массой, то гибкость будет больше у той, у которой длина сегментов меньше.

Полиэтилен

Полиэтилен представляет собой прозрачный материал и считается самым распространенным полимером. Этот материал отличает высокая влагостойкость и газонепроницаемость. Он не пропускает воду, устойчив к кислотам, щелочам, солям и другим агрессивным элементам, хороший диэлектрик. Эластичность полиэтилена сохраняется даже при отрицательной температуре окружающей среды до отметки -70С градусов. Считается очень прочным и стойким материалом. Полиэтилен легко режется ножом, а при взаимодействии с огнем горит и одновременно плавится. К недостаткам также можно отнести слабую адгезию с минеральными соединениями и клеями, подверженность старению при попадании солнечного света и агрессивным факторам окружающей среды. При данных отрицательных фактах полиэтилен не теряет своих основных эксплуатационных свойств.

Полиэтилен

При изготовлении полиэтилена применяются термопластичные полимеры одного вида, а в результате различных обработок, получают совершенно различные по характеристикам типы полиэтилена. В зависимости от видов полимеризации различают три вида полиэтилена:

  1. Полиэтилен низкой плотности, получаемый при использовании высокого давления. Структура данного полимера имеет разветвленный вид, что обуславливает ее невысокую плотность и прочность, представляет собой мягкий и эластичный материал. Полиэтилен низкой плотности используется для изготовления пакетов для хранения пищевых продуктов, отходов и одежды, других упаковочных материалов. Из него изготавливают небьющеюся химическую посуду для лабораторий.
  2. Полиэтилен, производимый при среднем давлении и плотности. Получается при давлении в 5-40 атмосфер и температуре 130-140С. Также используется для изготовления упаковочных материалов большей плотности, не дорогой посуды, различный контейнеров и форм для пищевых и не пищевых продуктов.
  3. Материал, получаемый при низком давлении, и имеющий высокую плотность. Обладает улучшенной механической прочностью по сравнению с двумя другими видами полиэтилена. Изготавливается под давлением 5 атмосфер и при температуре +70С градусов. Из данного вида полиэтилена изготавливают пакеты, игрушки для детей, посуду, а также формы для воды и сыпучих продуктов, миски, тазики и прочую хозяйскую утварь. Также изготавливают водопроводные трубы, медицинские шприцы, детали механизмов, шланги, фитинги поливочных систем. С применением литья изготавливают вентили, краны, задвижки, зубчатые колеса, шестерни.

Полимеры: свойства и классификация

Самая распространенная классификация полимеров по их составу:

  • высокомолекулярное органическое;
  • элементоорганическое;
  • неорганическое высокомолекулярное.

Классификация полимеров по происхождению:

  • природное происхождение, в естественной среде у природных полимеров (основополагающие в этом виде — полимеры белков, где мономер — аминокислота, полисахариды);
  • искусственное происхождение у высокомолекулярных веществ- измененные химически модифицированные природные вещества (так из целлюлозы делается пластмасса);
  • добытые синтетическим путем, используя полимеризацию или поликонденсацию различной структуры и длины. От длины цепочки зависит свойство и применение полимера.

Располагаться мономеры в пространстве могут по разному, отсюда различия в структурах. Она может быть:

  • линейной;
  • лестничной;
  • пространственной.

Смотрите видео о том, что такое полимеры.

Линейная структура может быть прямой цепочкой, протянувшейся зигзагом или спиралью. Участки цепи повторяются и прочно соединяются между аналогичными участками такой же цепи.

Характеризующая особенность первой структуры — обладание гибкостью. Отсюда особенность продуктов — высокая эластичность и малая изменяемость структуры при низких температурах, отсутствует хрупкость, ломкость на морозе. (Например, полиэтилен).

Во второй структуре участвует две цепочки, химически связанные между собой. Свойства данного вида полимеров: Жесткость, выносливость высоких температур и нерастворимость в растворителях органики.

Пространственное соединение образуется из не мелких мономеров, но целых молекул поперечно. Внешне это строение напоминает сетку с ячейками разного размера. Жесткость и теплостойкость в этом соединении значительно выше, чем у линейной структуры.

Свойства и применение

Термопластичными называют полимеры, которые при нагревании переходят из твердого состояния в мягкое, тягучее, а при охлаждении снова принимают твердую форму. Данные элементы получают реакцией полимеризации. Эта реакция проходит под большим давлением и без применения примесей. Реакция полимеризации стала возможна только благодаря современной химии и специализированной аппаратуре. Получить данный процесс в естественных условиях невозможно.

Свойства термопластичных полимеров вызваны способом соединения мономеров – соединение осуществляется в одном месте, в одном направлении. Другими словами, молекулы соединены между собой в линию при линейном виде, и в виде нескольких линий, сплетенных в паутину, при разветвленной структуре.

Термопластичные полимеры хорошо плавятся, а также растворяются в реагентах и растворителях. При испарении растворителя материал твердеет и приобретает прежние свойства. Это качество применяется при производстве различных клеев, лаков, красок, герметиков, замазок и других строительных растворов, имеющих в своем составе полимеры.

Из термопластичных полимеров выделяют:

  • полиолефины;
  • полиамиды;
  • поливинилхлориды;
  • фторопласты;
  • полиуретаны;
  • поликарбонаты;
  • полиметилметакрилаты;
  • полистирол.

На основании полимеров, исходных веществ и способов обработки выделяют следующие окончательные продуты:

  1. пластмассы;
  2. волокниты;
  3. пленки;
  4. покрытия;
  5. слоистые пластики;
  6. клеи.

Самое широкое применение термопластичные полимеры получили в строительстве при изготовлении материалов для изоляции, органических стекол, пленок и покрытий различной плотности и толщины, тонких волокон, а также в качестве связующих основ для клеев, штукатурок и теплоизоляционных материалов.

Из полимеров изготавливают бутылки и различные по форме сосуды, тару, трубы, детали машин оргтехники, компьютеров и электронного оборудования. А также используют при производстве напольного покрытия — линолеума, плитки, плинтусов, отделочных декоративных пленок, настенных панелей и пластика.

Особенности

Особые механические свойства

  • эластичность — способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
  • малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
  • способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).

Особенности растворов полимеров:

  • высокая вязкость раствора при малой концентрации полимера;
  • растворение полимера происходит через стадию набухания.

Особые химические свойства:

способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).

Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации