Содержание
- 1 Оптимальные технологические процессы термической обработки материала
- 2 Какое бывает окисление у разных сталей?
- 3 Термообработка металла в производственной компании «Уралдеталь» на оборудовании экстра-класса
- 4 Старение алюминиевых сплавов
- 5 Термический метод обработки металлов
- 6 Особенности термообработки алюминиевых сплавов
- 7 Примеры
- 8 1 Применение ТВЧ в промышленности
- 9 Виды термообработки
Оптимальные технологические процессы термической обработки материала
Выбор режима термообработки диктуется производственными требованиями. В большинстве случаев для придания надлежащих физико-механических характеристик используют:
- нормализацию;
- закалку с последующим отпуском.
Температурно-временные параметры термической обработки и выбор её вида зависят от исходной структуры стали. Данный материал принадлежит к сталям доэвтектоидного типа, поэтому в его составе при температурах выше нижней точки аустенитного превращения — 723 °С — на 30…50 °С содержится аустенит в виде твердой механической смеси с незначительным количеством феррита. Поскольку аустенит – более твёрдая структурная составляющая, чем феррит, то интервал закалочных температур для стали 65Г будет существенно ниже, чем для конструкционных сталей с более низким процентным содержанием углерода. Таким образом, температурный интервал закалки стали данной марки должен находиться в пределах не более 800…830 °С.
Примерно такой же температурный диапазон применяют и для проведения нормализации – технологической операции термообработки, которую используют с целью исправления структуры материала изделия, для снятия внутренних напряжений, а при последующей механической обработке полуфабриката – и для улучшения его обрабатываемости.
Поскольку ударная вязкость у закалённой стали 65Г – пониженная, то после закалки изделия из неё, в частности, пружины, обязательно должны пройти высокий отпуск. Происходящие в ходе отпуска мартенситно-аустенитные превращения снижают уровень возникающих во время закалки внутренних напряжений, снижают хрупкость и несколько поднимают показатели ударной вязкости.
Переход высокого отпуска исключается из режима только в том случае, когда заготовка проходит изотермическую закалку. В результате высокого отпуска сталь 65Г приобретает структуру сорбита, характерными особенностями которой являются мелкодисперсность структуры при сохранении изначально высоких показателей твёрдости, что полностью соответствует эксплуатационным требованиям.
Какое бывает окисление у разных сталей?
Хромоникелевая сталь — её называют жаростойкой потому, что она практически не поддаётся окислению.
Легированная сталь — у неё образуется плотный, но тонкий слой окалины, который защищает от дальнейшего окисления и не даёт растрескиваться при ковке.
Углеродистая сталь — она теряет около 2–4 мм углерода с поверхности при нагреве. Это для металла очень плохо, так как он теряет прочность, твёрдость и сталь ухудшается в закаливании. А особенно очень пагубным является обезуглероживание для ковки небольших деталей с последующей закалкой. Чтобы не было трещин на высоколегированной и высокоуглеродистой стали, их надо нагревать медленно.
Обязательно нужно обращаться к диаграмме «железо-углерод», где определена температура для начала и конца ковки. Делать это надо для того, чтобы металл при нагреве не приобретал крупнозернистую структуру и не снижалась его пластичность.
Но перегрев заготовки можно исправить методом термообработки, но для этого нужно дополнительная энергия и время. Если металл нагреть до ещё большей температуры, то это приведёт к пережогу, что дойдёт до того, что в металле нарушится связь между зёрнами и он полностью разрушится при ковке.
Термообработка металла в производственной компании «Уралдеталь» на оборудовании экстра-класса
«Уралдеталь» — одна из немногих компаний, в арсенале которой собственное оборудование экстра-класса. Мы используем многофункциональные современные печи, а также агрегаты с функцией цементации, благодаря этому термообработка стали максимально результативна, а затраты заказчика минимальны.
Производственные возможности нашей компании позволяют выполнять термообработку металла не только для Екатеринбургских заказчиков, география охвата широка: мы сотрудничаем с клиентами по всей России.
Термическая обработка металла – процесс, без которого невозможно обойтись ни одному производству. Термообработка улучшает производительность оборудования за счет улучшения характеристик деталей, в итоге возможность поломок исключается.
Старение алюминиевых сплавов
Старение проводится для улучшения прочностных характеристик изделия. Этот вид термической обработки заключается в выдержке в условиях обычного температурного режима.
Повышение прочности достигается путем распада твердого раствора, что необходимо после закалки, так как закалка приводит к пресыщенности металла.
Термообработка дюралюминия
Существует два способа старения алюминиевых сплавов: естественное и искусственное.
Естественное старение происходит без предварительного нагрева при обычных температурах. Это может происходить в условиях обычного склада или промышленного помещения, где температура воздуха не превышает 30 градусов.
Естественное старение возможно из-за особого свойства алюминия, которое называется «свежезакаленное состояние». Свойства изделий значительно отличаются сразу после закалки и после некоторого времени пребывания на складе.
Следует отметить, что искусственно состаренные сплавы можно вернуть к изначальному состоянию. Для этого нужно нагреть изделие до 250 градусов с выдержкой до одной минуты. Выдержка должна проводится в селитряной ванне в строго определенное время, с точностью до нескольких секунд.
Причем подобный возврат можно выполнять несколько раз, без потери прочности материала, но с небольшим изменением свойств. Возврат состаренного металла обычно проводят с целью восстановления пластичности, необходимой для изменения формы изделия.
Любой из типов термообработки широко используется в промышленности. Благодаря чему у производителей есть возможность получения материалов, полностью соответствующих требованиям производства. Причем такая обработка сплавов позволяет значительно улучшить свойства алюминия и получить материал, не имеющий аналогов.
Главное условие при термообработке – соблюдение требований и рекомендаций к температурному режиму обработки и времени выдержки. Малейшие отклонения могут привести к необратимым изменениям свойств материала.
Термический метод обработки металлов
Термическая обработка подразумевает изменение самой структуры материала, к чему приводит:
- нагревание;
- выдержка;
- охлаждение.
Такие операции приводят к упрочнению, разупрочнению и стабилизации металла.
Различают такие виды термообработки металлов или сплавов:
- отжиг. Заготовку нагревают, а затем охлаждают в печи, чем снимают остаточное напряжение внутри нее. Это приводит к повышению пластичности и уменьшению твердости металла;
- закалка. Сталь нагревают свыше критической отметки и немедленно охлаждают, что позволяет повысить прочность и снизить пластичность металла;
- отпуск. Закаленную деталь нагревают до определенной температуры, а затем выдерживают и охлаждают на воздухе (хрупкую сталь – в воде). Эта операция приводит к снятию (уменьшению) внутреннего напряжения, что делает заготовку пластичной;
- нормализация. Заготовку нагревают, а затем охлаждают на воздухе. Этот вариант экономичнее и быстрее, чем отжиг, ведь не требует одновременного остывания печи;
- старение. Материал заставляют быстро изменять те параметры, которые в обычных условиях меняются очень долго;
- охлаждение. Закаленную и остывшую до 200 градусов Цельсия заготовку выдерживают в охладителях, а затем используют при производстве режущих (повышает их стойкость и производительность) и измерительных (достигается хорошая стабилизация размеров) инструментов.
В связи с тем, что глубинные процессы, происходящие в середине металла во время термообработки, изучаются до сих пор, этот метод нельзя отнести к простым и однозначно предсказуемым.
Особенности термообработки алюминиевых сплавов
Алюминий и его сплавы требуют особого подхода к термообработке для достижения определенной прочности и структуры материала. Очень часто применяют несколько методов термообработки. Обычно, после закалки следует старение. Но некоторые типы материалов могут подвергаться старению без закалки.
Такая возможность появляется после отливки, когда компоненты, при повышенной скорости охлаждения, могут придать металлу необходимую структуру и прочность. Это происходит во время литья при температуре около 180 градусов. При такой температуре повышается уровень прочности и твердости, а также снижается степень тягучести.
Отжиг необходим для придания однородной структуры алюминиевому сплаву. С помощью этого метода состав становиться более однородным, активизируется процесс диффузии и выравнивается размер базовых частиц. Также можно добиться снижения напряжения кристаллической решетки. Температура обработки подбирается индивидуально, исходя из особенностей сплава, необходимых конечных характеристик и структуры материала.
Состав и свойства алюминиевых сплавов, упрочняемых термической обработкой
Важным этапом отжига является охлаждение, которые можно проводить несколькими способами. Обычно проводят охлаждения в печи или на открытом воздухе. Также применяется поэтапное комбинированное охлаждение, сначала в печи, а потом на воздухе.
Закалка требуется для упрочнения материала путем перенасыщения твердого раствора. Этот метод основан на нагреве изделий температурам и быстром охлаждении. Это способствует полноценному растворению составных элементов в алюминии. Используется для обработки деформируемых алюминиевых сплавов.
Для использования этого способа нужно правильно рассчитать температуру обработки. Чем выше степень, тем меньше времени требуется на закалку. При этом стоит подобрать температуру так, чтобы она превышала значение, необходимое для растворимости компонентов, но была меньше границы расплава металла.
Методом старения достигается увеличение прочности алюминиевого сплава. Причем необязательно подвергать изделия искусственному старению, так как возможен процесс естественного старения.
В зависимости от типа старения изменяется скорость структурных изменений. Поэтому искусственное старение более предпочтительно, так как оно позволяет повысить производительность работ. Подбор температуры и времени обработки зависит от свойств материала и характеристик легирующих компонентов.
Правильное сочетание уровня нагрева и времени выдержки позволяет повысить прочность и пластичность. Такой процесс называется стабилизацией.
Примеры
Гомогенизационный отжиг + старение
Например, для суперсплавов на базе никеля (типа «Инконель 718») типичной является следующая термическая обработка:
Гомогенизация структуры и растворение включений (англ. Solution Heat Treatment) при 768—782 °C с ускоренным охлаждением. Затем производится двухступенчатое старение (англ. Precipitation Heat Treatment) — 8 часов при температуре 718 °C, медленное охлаждение в течение 2 часов до 621—649 °C и выдержка в течение 8 часов. Затем следует ускоренное охлаждение.Закалка + высокий отпуск (улучшение)
Многие стали проходят упрочнение путём закалки — ускоренного охлаждения (на воздухе, в масле или в воде). Быстрое охлаждение приводит, как правило, к образованию неравновесной мартенситной структуры. Сталь непосредственно после закалки отличается высокой твёрдостью, остаточными напряжениями, низкой пластичностью и вязкостью. Так, сталь 40ХНМА (SAE 4340) сразу после закалки имеет твёрдость выше 50 HRC, в таком состоянии материал непригоден для дальнейшего использования из-за высокой склонности к хрупкому разрушению. Последующий отпуск — нагрев до 450 °C — 500 °C и выдержка при этой температуре приводят к уменьшению внутренних напряжений за счёт распада мартенсита закалки, уменьшения степени тетрагональности его кристаллической решётки (переход к отпущенному мартенситу). При этом твёрдость стали несколько уменьшается (до 45 — 48 HRC). Подвергаются улучшению стали с содержанием углерода 0,3 — 0,6 % C.
1 Применение ТВЧ в промышленности
Токи высокой частоты – это токи, в которых число колебаний за одну секунду достигает одного миллиона. Напряжение в станках ТВЧ может быть от одной тысячи до нескольких сотен тысяч вольт.
Устройства ТВЧ широко используют в промышленности.
- с помощью ТВЧ в индукционных печах происходит плавление любого металла. Удобство данного метода состоит в том, что применяться он может в условиях полного вакуума. Это позволяет избежать окисления и загрязнения металлов;
- с помощью высокочастотных токов производят закалку металла. Особенность такой закалки состоит в том, что закаляется лишь оболочка изделия, внутренняя часть остается пластичной. Это защищает металл от хрупкости;
- с помощью устройств ТВЧ сваривают некоторые детали в автопромышленности.;
- в медицине высокочастотные токи применяются для лечения кожных заболеваний, методом улучшения кровообращения в капиллярах, суставов, позвоночника, прогревания внутренних органов;
Последним изобретением на основе высокочастотных токов стал станок по сварке натяжных потолков из ПВХ. Это устройство мы рассмотрим подробнее.
1.1 Устройства ТВЧ для устройства натяжных потолков ПВХ
Натяжные потолки сегодня по праву занимают одно из первых мест во внутренней отделке дома. Они обладают высокими эстетическими качествами, довольно быстро монтируются, позволяют скрыть потолочные коммуникации. К тому же на натяжных полотнах могут быть нанесены узоры, рисунки и, даже, собственные фотографии.
Станок ТВЧ отличается высокой скоростью выполнения сварки натяжных потолков
С помощью расцветки и формирования полотен дизайнеры решают вопросы визуального увеличения пространства, искусственного точечного освещения помещений и многое другое.
Шов на натяжных потолках из ткани или ПВХ должен быть:
- прочным. Полотно на потолке имеет достаточно высокий коэффициент натяжения. Поэтому шов на ткани или ПВХ должен быть настолько прочным, чтобы не разорвался и не потянулся ни при монтаже, ни со временем;
- незаметным. Прелесть натяжных потолков заключается именно в том, что они выглядят как единое полотно из красивой ткани. Любые загибы или сварочные швы значительно снизят эстетичность интерьера.
Шов, выполненный на стенке ТВЧ является прочным и имеет эстетичный вид
Именно эти две задачи можно безупречно решить с помощью аппарата ТВЧ для натяжных потолков.
1.2 Устройство
Станки ТВЧ состоят из следующих механизмов:
- Механизм подавления электродуги. В случае появления искр или, как следствие, электрической дуги, свариваемое полотно может прогореть. К тому же есть вероятность выхода из строя самого сварного электрода. Поэтому станок оснащен автоматическим регулятором, который снижает мощность генератора, в случае опасности возникновения искр.
- Механизм для подавления помех. Поскольку высокочастотные токи создают собственное высокое магнитное поле, но при этом чувствительны к другим магнитным полям, станок оснащен экраном, создающим, своего рода, защитный купол над отдельно взятым ТВЧ устройством.
- Предохранительное устройство защищает станок от перепадов напряжения в электросети.
- Сварное устройство. Данный механизм соединяет ПВХ полотна посредством диэлектрического нагревания.
- Механизм привода. Большинство станков оснащены приводами двух типов: ножным и пневматическим. Пневматический привод является более точным и более безопасным, поскольку позволяет уберечь станок и полотно от пережима и прочих ошибок обслуживающего персонала.
- Кроме этого каждый станок предусматривает наличие инвертора, который, собственно, и генерирует высокочастотные токи.
Все эти механизмы устанавливаются на станину, представляющую собой стол. Такая станина позволяет удобно уложить полотно для сварки и избежать изгибов или искривлений.
1.3 Принцип работы
Принцип работы ТВЧ станков для натяжных потолков основывается на диэлектрическом нагреве двух полотен, контактирующих между собой. В процессе сварки в отдельных случаях могут использоваться присадочные материалы.
Такие устройства позволяют производить спайку:
- быстро;
- равномерно;
- надежно;
- прогревая лишь конкретные точки.
Станок ТВЧ JL-5000FA для натяжных потолков
Процесс спайки производится посредством двух электродов, через которые и проходит диэлектрический ток.
Спайка может производиться тремя способами:
- встык;
- внахлест;
- Т-образным швом.
ТВЧ станки производства Китай для ПВХ в промышленности применяют не только для пайки натяжных потолков. С их помощью изготавливают:
- подушки безопасности для автомобилей;
- детские надувные мячи и круги;
- пляжные горки и аттракционы, типа «банана»;
- пляжные сумки и матрацы, и прочие изделия из ПВХ.
Виды термообработки
Термическая обработка (термообработка) стали, цветных металлов — процесс изменения структуры стали, цветных металлов, сплавов при нагревании и последующем охлаждении с определенной скоростью.Термическая обработка (термообработка) приводит к существенным изменениям свойств стали, цветных металлов, сплавов. Химический состав металла не изменяется.
Отжиг — термическая обработка (термообработка) металла, при которой производится нагревание металла, а затем медленное охлаждение. Эта термообработка (т. е. отжиг) бывает разных видов (вид отжига зависит от температуры нагрева, скорости охлаждения металла).