Андрей Смирнов
Время чтения: ~18 мин.
Просмотров: 0

Резины. состав, свойства, применение резины

Производство резины

При выработке силиконового каучука горячей вулканизации используется специализированное оборудование, включающее смесительные вальцы, пластификатор, отопительные каналы, экструдер, каландры и вулканизационные прессы. Жидкую силиконовую резину получают из исходной смеси, состоящей из силиконового каучука, активных и полуактивных наполнителей и вспомогательных веществ.

Добавляя в нее соответствующие компоненты для вулканизации силиконовой резины, возможно под действием температуры свыше +100 °С изготовление эластичных резиновых изделий. Причем не стоит забывать, что попадание в смесь даже небольшого количества катализаторов из серы и антиоксидантов, используемых для изготовления традиционной резины, может испортить резину из силиконового каучука. Поэтому при производстве листовой силиконовой резины применяется отдельное оборудование.

В процессе формования или литьевой прессовки смесь помещается в форму для выдержки под давлением в течение определенного времени. При этом температура доходит до величины, при которой начинается вулканизация. В производстве силиконовой резины для форм в виде смазки применяют водный раствор моющего средства. В ходе литья под давлением подачу смеси осуществляют с помощью роликового ленточного погрузчика, установленного на литьевой машине. Профильные детали, такие как ленты, кабельные оболочки, прутки и шланги, изготавливают методом экструзии. Вулканизация при этом обычно происходит в канале при подаче разогретого воздуха, возможен также процесс с вулканизацией паром.

Силиконовые эластомеры обладают повышенными антиадгезионными характеристиками, по этой причине склеить силиконовою резину, детали из нее между собой или с прочими материалами, довольно затруднительно. Для склеивания используют два способа. Первый заключается в применении средства вулканизации, наделенного адгезионными характеристиками, а второй предполагает использование специального клея для силиконовой резины, так как для этого не подходят традиционные склеивающие средства. Решая вопрос, чем склеить силиконовую резину, специалисты разработали специальные грунтовки на силиконовой основе, способные обеспечить требуемый скрепляющий эффект.

Исходные смеси с силиконовым каучуком хранят в защищенных от света, плотно закрытых емкостях. Хранение приготовленных для вулканизации смесей допустимо при температуре не выше +30 °С. Их срок хранения не должен быть больше 4 месяцев, а исходных смесей – года.

Сырая резина — применение

Основное применение этого материала – это ремонтные работы. Кроме этого ее применяют для создания различных прокладок, применяемых в трубопроводной арматуре.

Для ремонта камер и покрышек чаще все применяют листовую резину. При этом необходимо соблюдать определенные технологические правила. В частности, края поврежденного места необходимо зачистить или с помощью напильника или грубой абразивной шкурки. После этого необходимо выровнять края поврежденного места. Место, на которое будет нанесена заплатка, должно быть обработано обезжиривающим составом.

После этого можно положить на поврежденное место кусок этого материала, его размер должен превышать размер поврежденного места. Уложенную заплатку надо зафиксировать с помощью струбцины и выполнить вулканизацию. Для этого можно использовать или серийно выпускаемый вулканизатор или самостоятельно изготовленный.

Химический состав

Появление дюралюминия связывают с немецкой компанией, которая расположена в городе Дюрен. Специалисты этой компании занимались разработкой нового сплава, и ошибочно провели смешивание ранее не используемых компонентов. После проведения предварительных тестов они были удивлены тем, какого смогли добиться результата, но изначально посчитали их ошибочными. Спустя некоторое время они повторили свой эксперимент и добились еще более высоких результатов.

Алюминий и дюралюмин, в первую очередь, отличаются друг от друга химическим составом. Дюралюминий обладает следующим составом:

  1. 4-5% меди;
  2. 93% алюминия;
  3. 2-3% других легирующих элементов, которые добавляются для придания сплаву особых качеств.

Состав различных марок дюрали

Долгое время дюралюмин изготавливался при обычных условиях, что определяло некачественное соединение элементов. Начавшаяся война сделала данный металл стратегически важным, что привело к поиску более эффективных методов соединения всех компонентов. Результатом данных исследований стали следующие технологические особенности процесса:

  1. Нагрев проводится при температуре до 500 градусов Цельсия.
  2. На разогрев уходит около 3-х часов.
  3. Проводится быстрое охлаждение водой или селитрой для повышения прочности.

Наиболее распространенная марка Д16 имеет следующий химический состав:

  1. Основная часть дюралюминия во всех случая представлена алюминием, на который приходится 90-94% от общей массы.
  2. В состав добавляется достаточно большое количество меди (3,8-4,9%).
  3. Обязательным условием можно назвать добавление в равных частях кремния и железа, примерно по 0,5%.
  4. В состав входит цинк (не более 2,5%).
  5. Добавляется фиксированное значение магния — 1,8%.

Остальные компоненты представлены хромом, марганцем, титаном, которые берутся примерно по 1%.

Получаемый дюралюминий при подобном химическом составе обладает достаточно высоким показателем мягкости. Именно поэтому Д16 зачастую применяется в качестве полуфабрикатов при производстве штамповок.

Не только состав сплава дюрали оказывает влияние на основные технологические свойства. Вместе со специфической подборкой компонентов применяются технология искусственного старения, которая заключается в закалке.Для повышения прочности и твердости поверхности сплав подвергается термической обработке с охлаждением.

Отличительные признаки полимеров по физическим свойствам

Вид полимераМеханические признакиСостояние поверхности на ощупьЦветПрозрачностьБлеск
ПВДМягкая, эластичная, стойкая к раздируМаслянистая, гладкаяБесцветнаяПрозрачнаяМатовая
ПНДЖестковатая, стойкая к раздируСлегка маслянистая, гладкая, слабо шуршащаяБесцветнаяПолупрозрачнаяМатовая
ППЖестковатая, слегка эластичная, стойкая к раздируСухая, гладкаяБесцветнаяПрозрачная или полупрозрачнаяСредний
ПВХЖестковатая, стойкая к раздируСухая, гладкаяБесцветнаяПрозрачнаяСредний
ПСЖесткая, стойкая к раздируСухая, гладкая, сильно шуршащаяБесцветнаяПрозрачнаяВысокий
ПАЖесткая, слабо стойкая к раздируСухая, гладкаяБесцветная или светло-желтаяПолупрозрачнаяСлабый
ПКЖесткая, слабо стойкая к раздируСухая, гладкая, сильно шуршащаяБесцветная, с желтоватым или голубоватым оттенкомВысоко-прозрачнаяВысокий

При какой температуре плавится медь

Плавления происходит, когда из твердого состояния металл переходит в жидкое. Каждый элемент имеет собственную температуру плавления. Многое зависит от примесей в металле. Обычная температура плавления меди — 1083 ° C. Когда добавляется олово, температура снижается до 930- 1140 ° C. Температура плавления зависит здесь от содержания в сплаве олова. В сплаве купрума с цинком плавление происходит при 900- 1050 ° C .

При нагреве любого металла разрушается его кристаллическая решетка. По мере нагревания повышается температура плавления, но затем выравнивается по достижении определенного предела температуры. В этот момент и плавится металла. Полностью расплавляется, и температура повышается снова.

Когда металл охлаждается, температура снижается, в определенный момент остается на прежнем уровне, пока металл не затвердеет полностью. После полного затвердевания температура снижается опять. Это демонстрирует фазовая диаграмма, где отображен температурный процесс с начала плавления до затвердения. При нагревании разогретая медь при 2560 ° C начинает закипать. Кипение подобно кипению жидких веществ, когда выделяется газ и появляются пузырьки на поверхности. В момент кипения при максимально больших температурах начинается выделение углерода, образующегося при окислении.

Способы получения и свойства резиновой крошки [ править | править код ]

Наиболее перспективными являются виды переработки, которые связаны с измельчением отходов резинотехнических изделий и отработанных покрышек.

Измельчение (или дробление) — это процесс разделения твёрдого тела на части всё уменьшающихся размеров под воздействием внешних сил при отрицательных или положительных температурах измельчения.

Структура и свойства резиновой крошки сильно зависят от способов разрушения (переработки) изношенных покрышек и измельчения шинной резины, для чего применяются следующие виды энергетического воздействия:

• режущее воздействие; • сдвиговое деформационное; • воздействие электромагнитных и ультразвуковых волн; • электрических разрядов; • лазерных пучков; • ударно-волновое воздействие или взрывоциркуляционное

Механическое измельчение изношенных покрышек

Способ механического измельчения считается одним из самых эффективных, так как при данном виде измельчения покрышек резиновая крошка сохраняет свои молекулярные свойства, что способствует выпускать продукции на основе резиновой крошки высокого качества. Измельчение проходит в три-пять этапов.

На первом этапе, при грубом дроблении покрышек образуются куски («чипсы») размером примерно равным 10÷50 мм, в этом случае достигается максимальная насыпная плотность разрезанной резины (480÷520 кг/м³) , а такой важный показатель качества конечного продукта, как фактор развитости удельной поверхности для «чипсов» имеет низкое значение

На следующей стадии механического измельчения покрышек в целях отделения металлокорда и текстиля получают гранулят с размером частиц от 3 мм до 10 мм, насыпная плотность которого составляет

400 кг/м³, а удельная поверхность частиц

Резиновую крошку отделяют от корда, волокна и посторонних включений с помощью вибрационных сит, трепальных барабанов, магнитных и воздушных сепараторов различной конструкции. По степени измельчения резиновая крошка следует за гранулятом, который может входить в гранулометрический состав товарной резиновой крошки, также как, и тонкоизмельчённым резиновый порошок с размером частиц менее 0,5 мм.

Ударно волновое измельчение изношенных покрышек

измельчение (переработка шин)проводится в два-три этапа

Критерии оценкиМеханическая (Германия)Ударно-волновая (Россия)

или взрывоциркуляционная explotex

Мощность переработки (тыс.тн.шин/год)
30
30

Качество очистки резиновой крошки по металлокорду
99,9
99,9

Качество очистки резиновой крошки по текстилю
99,9
99,9

ср.площадь основного производства
6000 квм
1200 квм

Установленная электрическая мощность
4500 кВт
1220 кВт

Ступеней переработки покрышек
6-7 для получения гранулята и пыли: 1. Предшредирование (объем куском 50-150 мм); 2-5. Ступени Грануляции; 6. Доизмельчение (Fine granulation step); 7. Получение пыли при помощи жидкого азота.
2-3 для получения гранулята и пыли: 1. Охлаждение шин воздухом до −70ºС; 2.Взрыв (удорно-волновое измельчение); 3. 20 % — доизмельчение чистой резины

Стоимость завода переработки шин (млн.евро)
45
13

Технические характеристики и свойства силиконовых резин

Основополагающим документом, которым с недавних пор руководсьвуются производители силиконовой резины — это ГОСТ Р 57399-2017, регламентирующий технические требования к продукции, производимой из силиконовой резины. Этот документ введен в действие впервые и по сути, это копия с ASTM C 1115-06. Все технические требования, в частности, по твердости, удлинению и пр., приведены в строгом соответствии с ASTM C 1115-06.

То есть силиконовая резина должна отвечать следующим требованиям:

  • возможность эксплуатации в пресной и морской воде;
  • стойкость к воздействию аммиака, озона;
  • невосприимчивость к действию следующих химикатов – хлориды железа и натрия, карбоната натрия и пр.;
  • отсутствие взаимодействия с пищевыми продуктами – вода, пиво, твердые продукты;
  • возможность эксплуатации при температурах -50 +250 градусов Цельсия, без потери свойств.

Зависимость эластичности от температуры

Кроме названных требований, которым должна отвечать листовая силиконовая резина на основе кремниевых соединений, она должна быть:

  • химически инертной;
  • нетоксичной;
  • неприлипаемой;
  • износостойкой;
  • токонепроводящей.

Детальная классификация, некоторые технические параметры можно узнать ознакомившись с ГОСТ Р 57399-2017.

Как сделать форму для отливки

Перед тем, как расплавить алюминий, готовят болванку для отливки. Существует несколько способов заливки жидкого расплава. Чаще используют открытый и закрытый метод. О каждом стоит рассказать подробнее.

Открытая форма

Когда плавят алюминий по открытой методике, после плавления расплав выливают в подготовленную емкость, например, жестяную банку. Алюминиевую отливку вынимают из банки в горячем виде, когда горячий расплав немного схватится сверху. Достаточно несильно постучать по емкости. Если не нужен слиток заданной геометрии, расплавленный металл выливают на любую ровную огнеупорную поверхность, он хорошо держится, не растекается, внешне напоминает ртуть.

Закрытая форма

Сложные по геометрии отливки получают в специально приготовленных формах. Она должна соответствовать параметрам детали, обычно делается разъемной. Для изготовления формы используют деталь-макет, по которому делают отливку. В качестве формующего материала используют кремнезем, он хорошо трамбуется, его несложно найти. Кремнезем заменяют:

  • смесью речного песка и жидкого стекла;
  • смесь песка, цемента, вместо воды добавляют тормозную жидкость;
  • гипс, он удобен для сложных макетов.

Из гипса делают сплошные бесшовные формы, они одноразовые, их после застывания алюминия разбивают. Деталь-макет изготавливают из воска или пенопласта. Его помещают внутрь емкости, используемой для формы, затем заливают пустоты. Получаются ровные детали, не требующие дополнительной обработки. Когда используется гипс, его сушат в течение пары дней. Гипс боится влаги, разбухает. Он склонен к растрескиванию при высыхании. При контакте с парафином или пенопластом гипс сохраняет свою структуру, не образуется рытвин, раковин.

Состав и строение натурального каучука

Натуральный (природный) каучук (НК)  представляет собой высокомолекулярный непредельный углеводород, молекулы которого содержат большое количество двойных связей; состав его может быть выражен формулой (C5H8)n (где величина n составляет от 1000 до 3000); он является полимером изопрена.

Природный каучук содержится в млечном соке каучуконосных растений, главным образом, тропических (например, бразильского дерева гевея). Другой природный продукт — гуттаперча — также является полимером изопрена, но с иной конфигурацией молекул.

Длинную молекулу каучука можно было бы наблюдать непосредственно при помощи современных микроскопов, но это не удаётся, так как цепочка слишком  тонка: диаметр её, соответствует диаметру  одной молекулы. Если макромолекулу каучука растянуть до  предела, то она будет иметь вид зигзага, что объясняется характером химических связей между атомами углерода, составляющими скелет молекулы.

Звенья молекулы каучука могут вращаться не беспрепятственно в любом направлении, а ограниченно — только вокруг одинарных связей. Тепловые колебания звеньев заставляют молекулу изгибаться, при этом концы её в спокойном состоянии сближены.

При растяжении каучука концы молекул раздвигаются и молекулы ориентируются по направлению растягивающего усилия. Если устранить усилие, вызвавшее растяжение каучука, то концы его молекул вновь сближаются и образец принимает первоначальную форму и размеры.

Молекулу каучука можно представить себе как круглую,  незамкнутую пружину, которую можно сильно растянуть, разведя её концы. Освобождённая пружина вновь принимает прежнее положение. Некоторые исследователи представляют молекулу каучука в виде пружинящей спирали. Качественный анализ показывает, что каучук состоит из двух элементов — углерода и водорода, то есть, относится к классу углеводородов.

Первоначально принятая формула каучука была С5Н8, но она слишком проста для такого сложного вещества как каучук. Определение молекулярной массы показывает, что она достигает нескольких сот тысяч (150 000 — 500 000). Каучук, следовательно, природный полимер.

Экспериментально доказано, что в основном макромолекулы натурального каучука состоят из остатков молекул изопрена, а сам натуральный каучук — природный полимер цис-1,4-полиизопрен.

Молекула натурального каучука состоит из нескольких тысяч исходных химических групп (звеньев), соединённых друг с другом и находящихся в непрерывном колебательно-вращательном движении. Такая молекула похожа на спутанный клубок, в котором составляющие его нити местами образуют правильно ориентированные участки.

Основной продукт разложения  каучука — углеводород, молекулярная формула которого однозначна с простейшей формулой каучука. Можно считать, что макромолекулы каучука образованы молекулами изопрена. Существуют подобные полимеры, которые не  проявляют такой эластичности, какую имеет каучук. Чем же объясняется это его особое свойство?

Молекулы каучука, хотя и имеют линейное строение, не вытянуты в линию, а многократно изогнуты, как бы свёрнуты в  клубки.  При  растягивании  каучука такие молекулы распрямляются, образец каучука от этого становится длиннее. При снятии нагрузки, вследствие внутреннего теплового движения, звенья молекулы возвращаются в прежнее свёрнутое состояние, размеры каучука сокращаются. Если же каучук растягивать с достаточно большой силой, то произойдёт не только выпрямление молекул, но и смещение их относительно друг друга — образец каучука может порваться.

Для чего нужно маркирование на пластике

Маркировка пластика необходима для лучшего понимания того или иного вида материала.

Однако это не значит, что его стоит выбрасывать, не подвергая утилизации и переработке.

Маркировка представлена международным изображением рециклинга (треугольник из трех стрелок по часовой). Такое обозначение означает, что изделие относится к вторсырью и подлежит вторичной переработке.

Внутри символа располагается цифра от 1 до 7. Внизу знака изображена аббревиатура соответствующая цифре. Каждому числу соответствуют свои буквы, их порядок изменяться не может.

Именно по маркировке определяют, для чего лучше подходит ёмкость: для воды, бытовой химии, лакокрасочных веществ и т.д. Зная маркировку можно заметить, идет ли производитель на нарушения, и тем самым обезопасить свое здоровье.

1, PET или PETE

На русском выглядит как ПЭТФ и цифра 1. Буквы означают вещество полиэтилентерефталат.

Относится к наиболее распространенным видам пластика, который применяется в производстве бутылок для пищевых напитков (соков, газировки, воды и других безалкогольных продуктов), моющих средств и т.д.

Особенность pet в том, что эта тара одноразовая. Повторное использование приводит к выделению вредных веществ, отрицательно влияющих на человеческое здоровье (щелочь).

Этот пластик дешев в производстве. Легко утилизируется.

2, HDPE (PE HD)

Данный полиэтилен отличается хорошей переносимостью высокой температуры и прочностью. Бутылки для шампуней, пакеты, тара для отбеливающих жидкостей, детские игрушки, прочные ёмкости для пищевых продуктов — изделия, изготовленные из высокоплотного полиэтилена.

Подлежит утилизации в виде переработки и имеет низкую стоимость. По сути, область применения аналогична с 1 ПЕТФ, но данный материал крепче.

Бутылки способны выделять формальдегид, который оказывает влияние на ЦНС, репродуктивную и дыхательную функции организма.

3, PVC (V)

Один из тех пластиков, которые вредно использовать для пищевых изделий. Звучит как поливинилхлорид. Отечественный производитель маркирует изделия как ПВХ с числом 3.

  • Идеально подходит для строительных нужд (трубы, пластиковые окна, тара для технических жидкостей и др.).
  • Блокирует солнечные лучи, хорошо держит нагрев.
  • Выделяет критическое количество токсинов. При поджоге выделяются канцерогены.
  • Переработать в РФ невозможно. После утилизации вещество не соответствует первичному сырью.

4, LDPE

Стандартный и безопасный полиэтилен. Пластик низкой плотности и высокого давления (ПВД).

  • Условно пищевой пластик. Из него делают пакеты для мусора, линолеум, пищевую пленку.
  • Отличная гибкость, возможность повторного применения.
  • Применяется как вторичное сырье.
  • Уступает лишь 2 и 5 группе по безвредности.

5, PP

Безопасный полипропилен (ПП). Имеет достаточную твердость и устойчивость к температурным воздействиям.

Из него выполнены емкости для детского питания, контейнеры для еды, трубочки для сока, тара для йогурта и т.д.

  • Считается самым безопасным материалом для продуктов.
  • Легко перерабатывается, доступен для повторного использования.
  • PP тара не оказывает негативного влияния на организм.
  • При нагреве пластик не начинает плавиться.

6, PS

По ГОСТУ этот пластик называется полистирол. ПС безвреден до тех пор, пока не подвергается сильному нагреву, при котором вырабатывает канцерогены. Игрушки, изоляторы, технические и бытовые предметы. Имеет небольшой вес и достаточную твердость. Идеально подходит для холодного применения.

Часть контейнеров для еды изготавливается из него. При переработке ПС происходит выделение стирола — вредного вещества.

7, Other или О

В данную маркировку попадают все остальные виды пластика. Их применение не столь масштабно как у вышеперечисленных материалов. Сюда входят как безопасные пластики, так и вредные. Чаще к 7 группе относится поликарбонат.

При обнаружении данной маркировки покупать продукт с ней не рекомендуется. Дело в том, что некоторые полимеры могут содержать бисфенол А — опасное для людей вещество. Из материалов этой группы изготавливаются корпусы для мобильных устройств и другой техники.

Как происходит процесс?

Чтобы провести процесс плавки, необходимо знать не только температуру плавления стали, но и использовать промышленное оборудование. Технология состоит из трех основных этапов:

Плавка породы. Этот этап подразумевает под собой переплавку шихты до образования ванны расплавленного металла

Важно, чтобы из образующейся ванны удалялся фосфор. Для этого шлаки должны содержать оксид железа

Температурные показатели не должны доходить до критических.
Следующий этап — закипание ванны расплавленной шихты. Для закипания жидкой массы увеличивается температурный режим. При этом интенсивно окисляется углерод. Если он не будет окислять, технологических процесс остановится. Чтобы сделать процесс более интенсивным, в ванну вдувают чистый кислород.
Третий этап — раскисление металла. Этот процесс нужен чтобы снизить количество кислорода в расплавленной массе. Для этого может применяться два метода — осаждающий, диффузный. Первый представляет собой добавление в расплавленную массу ферромарганца, ферросилиция, алюминия. Второй метод идентичен первому.

Чтобы улучшить качество стали, расплавленную массу дополнительно обрабатывают, после того как сольют из печи. Для этого проводится обдувка аргоном.

Процесс плавления в домашних условиях

Плавление — это довольно опасный процесс. Предварительно необходимо обязательно побеспокоиться о средствах защиты от различных ядовитых веществ, которые будут образовываться, а также подготовить литейную форму.

Средства защиты

  1. Не обойтись без специальных перчаток даже в том случае, если расплавить алюминий необходимо лишь единожды. Это, пожалуй, основное средство защиты, так как расплавленная масса с большой долей вероятности может попасть на руки, и тогда неминуемо на коже появится ожог, поскольку температура жидкого металла превышает 600 градусов.
  2. Следующая часть тела, которую также необходимо защитить от попадания горячего алюминия — глаза. При частой плавке не обойтись без специальной защитной маски, ну или хотя бы очков. Но лучше всего работать в костюме, который устойчив к воздействию высокой температуры в несколько сотен градусов.
  3. Если необходимо получить чистый алюминий, потребуется рафинирующий флюс. И тогда работать нужно в химическом респираторе.

https://youtube.com/watch?v=cIlonSuReH0

Выбор формы для литья

Для того, чтобы отлить алюминий, необязательно запасаться литейной формой. Достаточно лишь приобрести лист из более тугоплавкого металла — из стали, вылить на него расплавленный алюминий и подождать, пока последний затвердеет. Но для получения какой-либо детали из алюминия обязательно придется приобретать форму для литья.

Ее можно изготовить самостоятельно в домашних условиях. Для этой цели обычно используется скульптурный гипс. Он заливается в форму, затем какое-то время охлаждается. После этого в него вставляют модель и сверху кладут вторую емкость с гипсом

При этом важно не забыть проделать отверстие в гипсе с помощью какого-нибудь предмета цилиндрической формы. Через это отверстие и будет заливаться горячий алюминий

При плавлении алюминия не обойтись без так называемого тигеля: то есть емкости из тугоплавкого металла. Она может быть выполнена из фарфора, кварца, стали, чугуна. Впрочем, изготавливать тигель самостоятельно вовсе не обязательно, ведь его можно просто купить в специальном магазине. Объем тигеля зависит от того, какое количество металла требуется получить.

Производство и применение алюминия

Процесс производства очень энергоемкий и поэтому первый большой завод в нашей стране был построен и запущен в XX веке. Основным сырьем для получения этого металла является оксид алюминия. Чтобы его получить, необходимо минералы, содержащие алюминий или бокситы, очистить от примесей. Далее электролитическим способом расплавляют естественный или полученный искусственным путем криолит при температуре чуть ниже 1000 ºС . Затем начинают понемногу добавлять оксид алюминия и сопутствующие вещества, необходимые для улучшения качества металла. В процессе оксид начинает разлагаться и выделяется алюминий. Чистота получаемого металла 99,7% и выше.

Что такое температура плавки металлов?

Температура плавки металлов – значение температуры нагревания металла, при которой начинается процесс перехода из исходного состояния в другое, то есть процесс противоположный кристаллизации (отвердевания), но неразрывно связаный с ней.

Итак, для расплавления металл нагревают извне до температуры плавки и продолжают нагревать для преодоления границы фазового перехода. Суть в том, что показатель температуры плавки означает температуру, при которой металл находится в фазовом равновесии, то есть между жидким и твердым телом. Другими словами существует одновременно, как в том, так и в другом состоянии. А для плавления нужно нагреть его больше пограничной температуры, чтобы процесс пошел в нужную сторону.

Стоит сказать о том, что только для чистых составов температура плавки постоянна. Если в составе металла находятся примеси, то это сместит границу фазового перехода, а, соответственно, и температура плавления будет другой. Это объясняется тем, что состав с примесями имеет иную кристаллическую структуру, в которой атомы взаимодейстуют между собой по-другому. Исходя из этого принципа, металлы можно разделить на:

  • легкого плавления, такие как ртуть и галлий, например, (температура плавки до 600°С)
  • среднеплавкие — это алюминий и медь (600-1600°С)
  • тугоплавкие — молибден , вольфрам (больше 1600°С).

Знание показателя температуры плавления необходимо, как при производстве сплавов для правильного расчета их параметров, так и при эксплуатации изделий из них, поскольку этот показатель определяет ограничения их использования. Уже давным давно для удобства ученые физики свели эти данные в одну таблицу. Существуют таблицы температур плавки как металлов, так и их сплавов.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации