Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 1

Плотность металла кг м3 справочник

Основные характеристики алюминия

Алюминий — серебристый металл с удельным весом 2,7*103кг/м3 и плотностью 2,7 г/см3. Легкий и пластичный, хорош, как проводник электроэнергии, благодаря тому, что теплопроводность алюминия довольно высока — 180 ккал/м*час*град (указан коэффициент теплопроводности). Теплопроводность алюминия превышает аналогичный показатель чугуна в пять раз и железа в три раза.

Благодаря своему составу, этот металл можно легко раскатать в тонкий лист или вытянуть в проволоку. При соприкосновении с воздухом на его поверхности образуется оксидная пленка (оксид алюминия), которая является защитой от окисления и обеспечивает его высокие антикоррозионные свойства. Тонкий алюминий, например, фольга или порошок этого металла мгновенно сгорают, если их нагреть до высоких температур и становятся оксидом алюминия.

Металл не особенно устойчив к агрессивным кислотам. К примеру, его можно растворить в серной или соляной кислотах даже, если они разбавленны, особенно, если их нагреть. Однако он не растворяется ни в разбавленной ни в концентрированной и при этом холодной азотной кислоте, благодаря оксидной пленке. Определенное воздействие на металл имеют водные растворы щелочей — оксидный слой растворяется и образуются соли, содержащие этот металл в составе аниона — алюминаты.

Известно, что алюминий является самым часто встречающимся металлом в природе, но впервые в чистом виде его смог получить ученый-физик из Дании Х. Эрстед еще в 1925 году XIX века. Этот металл занимает третье место по распространенности в природе среди элементов и является лидером среди металлов. 8,8% алюминия содержит земная кора. Его выявили в составе слюд, полевых шпатов, глин и минералов.

Применение алюминия:

  1. 1. Водород
  2. 2. Гелий
  3. 3. Литий
  4. 4. Бериллий
  5. 5. Бор
  6. 6. Углерод
  7. 7. Азот
  8. 8. Кислород
  9. 9. Фтор
  10. 10. Неон
  11. 11. Натрий
  12. 12. Магний
  13. 13. Алюминий
  14. 14. Кремний
  15. 15. Фосфор
  16. 16. Сера
  17. 17. Хлор
  18. 18. Аргон
  19. 19. Калий
  20. 20. Кальций
  21. 21. Скандий
  22. 22. Титан
  23. 23. Ванадий
  24. 24. Хром
  25. 25. Марганец
  26. 26. Железо
  27. 27. Кобальт
  28. 28. Никель
  29. 29. Медь
  30. 30. Цинк
  31. 31. Галлий
  32. 32. Германий
  33. 33. Мышьяк
  34. 34. Селен
  35. 35. Бром
  36. 36. Криптон
  37. 37. Рубидий
  38. 38. Стронций
  39. 39. Иттрий
  40. 40. Цирконий
  41. 41. Ниобий
  42. 42. Молибден
  43. 43. Технеций
  44. 44. Рутений
  45. 45. Родий
  46. 46. Палладий
  47. 47. Серебро
  48. 48. Кадмий
  49. 49. Индий
  50. 50. Олово
  51. 51. Сурьма
  52. 52. Теллур
  53. 53. Йод
  54. 54. Ксенон
  55. 55. Цезий
  56. 56. Барий
  57. 57. Лантан
  58. 58. Церий
  59. 59. Празеодим
  60. 60. Неодим
  61. 61. Прометий
  62. 62. Самарий
  63. 63. Европий
  64. 64. Гадолиний
  65. 65. Тербий
  66. 66. Диспрозий
  67. 67. Гольмий
  68. 68. Эрбий
  69. 69. Тулий
  70. 70. Иттербий
  71. 71. Лютеций
  72. 72. Гафний
  73. 73. Тантал
  74. 74. Вольфрам
  75. 75. Рений
  76. 76. Осмий
  77. 77. Иридий
  78. 78. Платина
  79. 79. Золото
  80. 80. Ртуть
  81. 81. Таллий
  82. 82. Свинец
  83. 83. Висмут
  84. 84. Полоний
  85. 85. Астат
  86. 86. Радон
  87. 87. Франций
  88. 88. Радий
  89. 89. Актиний
  90. 90. Торий
  91. 91. Протактиний
  92. 92. Уран
  93. 93. Нептуний
  94. 94. Плутоний
  95. 95. Америций
  96. 96. Кюрий
  97. 97. Берклий
  98. 98. Калифорний
  99. 99. Эйнштейний
  100. 100. Фермий
  101. 101. Менделеевий
  102. 102. Нобелий
  103. 103. Лоуренсий
  104. 104. Резерфордий
  105. 105. Дубний
  106. 106. Сиборгий
  107. 107. Борий
  108. 108. Хассий
  109. 109. Мейтнерий
  110. 110. Дармштадтий
  111. 111. Рентгений
  112. 112. Коперниций
  113. 113. Нихоний
  114. 114. Флеровий
  115. 115. Московий
  116. 116. Ливерморий
  117. 117. Теннессин
  118. 118. Оганесон

Примечание:  Фото https://www.pexels.com, https://pixabay.com

Как возможно научиться писать тексты и зарабатывать на этом удаленно? Например, можете пройти курс «Копирайтинг от А до Я», который подойдет даже начинающим авторам.

Другие записи:

карта сайта

алюминий атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решеткаатом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома электронные формулы сколько атомов в молекуле алюминия сколько электронов в атоме свойства металлические неметаллические термодинамические 

Коэффициент востребованности
162

Затвердевание алюминия

Чистый алюминий

Чистые металлы, в том числе, чистый алюминий, имеют четкую температуру плавления – точку плавления. Затвердевание или «замерзание» чистого алюминия происходит также при постоянной температуре. Когда чистый жидкий алюминий охлаждается, его температура падает до температуры затвердевания и остается при этой температуре, пока весь он (жидкий алюминий) не затвердеет. На рисунках 5 и 6 показаны типичные кривые охлаждения чистого металла с переходом его из жидкого состояния в твердое.


Рисунок 5 – Кривая охлаждения чистого металла (например, алюминия)


Рисунок 6 – Затвердевание чистого алюминия

Алюминиевый сплав

При затвердевании алюминиевого сплава, который состоит из алюминия и растворенного в нем легирующего элемента, например, кремния или меди, то кривая охлаждение этого сплава показывает, что начало затвердевания происходит при одной температуре, а окончание – при другой температуре (рисунок 7).


Рисунок 7 – Кривая охлаждения сплава (например, алюминиевого сплава)

Расплавление алюминиевых сплавов для литья

Для нагрева алюминиевого сплава до температуры жидкого состояния, при которой возможно выполнение операций литья, применяют плавильные печи различных видов. Тепловая энергия, которая требуется для того, чтобы нагреть металл до температуры жидкого состояния, при которой его можно разливать в литейные формы, состоит из суммы следующих компонентов:

  • Теплота, чтобы поднять температуру металла до температуры плавления
  • Теплота плавления, чтобы перевести металл из твердого состояния в жидкое состояние
  • Теплота для нагрева расплавленного металла до заданной температуры разливки

Температура разливки – это температура расплавленного металла, при которой он заливается в литейную форму. Важным фактором здесь является разность между температурой разливки и температурой, при которой начинается затвердевание. Этой температурой является температура (точка) плавления для чистого алюминия или температура ликвидус для алюминиевого сплава. Эту разность температур иногда называют перегревом. Этот термин также может применяться для количества теплоты, которое надо отобрать от жидкого металла между разливкой и моментом начала затвердевания.

Производство и применение алюминия

Металлический алюминий получают электролизом раствора окиси алюминия, называемой глиноземом, в расплавленном криолите. Окись алюминия добывают из боксита путем длительной очистки, а криолит получают либо из природного минерала, либо искусственным путем, причем последний способ в настоящее время даже дешевле. Процесс ведут в электрических печах при температуре около 1000°, силе тока около 50 000 а и напряжении 4—5 в (рис. 81).

Применяется алюминий главным образом в виде сплавов с другими металлами, так как он слишком мягок. Наиболее распространенными сплавами являются силумин — сплав алюминия с кремнием, дюралюминий, в состав которого, помимо алюминия, входят небольшие количества магния, железа, меди, марганца, магналий — сплав алюминия с магнием. Все эти сплавы легкие и прочные. Силумин применяется главным образом для литья, дюралюминий и магналий — в самолетостроении, машиностроении, судостроении, для изготовления посуды. Алюминием покрывают поверхность стальных и железных изделий, что предохраняет их от коррозии. Для этого стальное изделие выдерживают некоторое время в расплавленном алюминии или нагревают в порошке алюминия, который образует на поверхности сплав с металлом.

Такие изделия не окисляются даже при высокой температуре. Этот способ предохранения металлов от окисления называется алитированием.

Рис. 81. Схема промышленной установки для получения алюминия электролизом. 1 — крепление для анода; 2— штырь для подключения к сети угольного анода; 3 —корка застывшего электролита; 4 — наружный кожух; 5 — кирпичные стенки; 6 —графитовая обкладка; 7, 8 —катод; 9 — расплавленный алюминий; 10 — расплавленный электролит.

Алюминий широко применяется для изготовления проводов в электротехнике и алюминиевых выпрямителей, алюминиевая пыль — как краска для имитации под серебро, алюминиевый порошок —при алюминотермической сварке металлов.

■ 91. Глинозем содержит 91,8% окиси алюминия. Сколько можно получить алюминия из 2 т глинозема, если выход алюминия составляет 80% теоретического? 92. Используя материал § 104 и 106, составьте и заполните таблицу. (См. Ответ)

Применение алюминия
Свойства аллюминия Использование алюминия, с учетом его свойств

93. Используя материал § 105, составьте и заполните таблицу.

Свойства соединений алюминия
Формула соединения
Название
Встречается ли в природе и в виде какого минерала
Наиболее важное свойство
Примечание

Статья на тему Алюминий Свойства

Основные характеристики алюминия

33 3превышает аналогичный показатель

Благодаря своему составу, этот металл можно легко раскатать в тонкий лист или вытянуть в проволоку. При соприкосновении с воздухом на его поверхности образуется оксидная пленка (оксид алюминия), которая является защитой от окисления и обеспечивает его высокие антикоррозионные свойства. Тонкий алюминий, например, фольга или порошок этого металла мгновенно сгорают, если их нагреть до высоких температур и становятся оксидом алюминия.

Металл не особенно устойчив к агрессивным кислотам. К примеру, его можно растворить в серной или соляной кислотах даже, если они разбавленны, особенно, если их нагреть. Однако он не растворяется ни в разбавленной ни в концентрированной и при этом холодной азотной кислоте, благодаря оксидной пленке. Определенное воздействие на металл имеют водные растворы щелочей — оксидный слой растворяется и образуются соли, содержащие этот металл в составе аниона — алюминаты.

Известно, что алюминий является самым часто встречающимся металлом в природе, но впервые в чистом виде его смог получить ученый-физик из Дании Х. Эрстед еще в 1925 году XIX века. Этот металл занимает третье место по распространенности в природе среди элементов и является лидером среди металлов. 8,8% алюминия содержит земная кора. Его выявили в составе слюд, полевых шпатов, глин и минералов.

Что такое температура плавки металлов?

Итак, для расплавления металл нагревают извне до температуры плавки и продолжают нагревать для преодоления границы фазового перехода. Суть в том, что показатель температуры плавки означает температуру, при которой металл находится в фазовом равновесии, то есть между жидким и твердым телом. Другими словами существует одновременно, как в том, так и в другом состоянии. А для плавления нужно нагреть его больше пограничной температуры, чтобы процесс пошел в нужную сторону.

Стоит сказать о том, что только для чистых составов температура плавки постоянна. Если в составе металла находятся примеси, то это сместит границу фазового перехода, а, соответственно, и температура плавления будет другой. Это объясняется тем, что состав с примесями имеет иную кристаллическую структуру, в которой атомы взаимодейстуют между собой по-другому. Исходя из этого принципа, металлы можно разделить на:

  • легкого плавления, такие как ртуть и галлий, например, (температура плавки до 600°С)
  • среднеплавкие — это алюминий и медь (600-1600°С)
  • тугоплавкие — молибден , вольфрам (больше 1600°С).

Знание показателя температуры плавления необходимо, как при производстве сплавов для правильного расчета их параметров, так и при эксплуатации изделий из них, поскольку этот показатель определяет ограничения их использования. Уже давным давно для удобства ученые физики свели эти данные в одну таблицу. Существуют таблицы температур плавки как металлов, так и их сплавов.

Температура плавления алюминия

температура плавления влияет на выбор

Указанная температура относится к процессу расплавки чистого алюминия. Так как в чистом виде он применяется реже, а введение в его состав примесей меняет температуру плавления. Сплавы алюминия изготавливаются для того, чтобы изменить какие-либо его свойства, увеличить прочность, например, или жароустойчивость. В качестве добавок применяют:

  • цинк
  • медь
  • магний
  • кремний
  • марганец.

Обычно добавление других элементов в металл приводит к тому, что температура плавления сплава понижается, но не всегда. К примеру, добавление меди в объеме 5,7% приводит к понижению температуры плавления до 548ºС. Полученный сплав называют дюралюминием, его подвергают дальнейшей термической закалке. А алюминиево-магниевые составы плавятся при температуре 700 — 750ºС.

Во время процесса плавления необходим строгий контроль температуры расплава, а также присутствия газов в составе, которые выявляют через технологические пробы или способом вакуумной экстракции. На заключительной стадии производства сплавов алюминия проводят их модифицирование.

Состав и структура алюминия

Алюминий – это самый распространенный в земной коре металл. Его относят к легким металлам. Он обладает небольшой плотностью и массой. Кроме того, у него довольно низкая температура плавления. В то же время он обладает высокой пластичностью и показывает хорошие тепло- и электропроводные характеристики.

Структура алюминия

Предел прочности чистого алюминия составляет всего 90 МПа. Но, если в расплав добавить некоторые вещества, например, медь и ряд других, то предел прочности резко вырастает до 700 МПа. Такого же результат можно достичь, применяя термическую обработку.

Алюминий, обладающий предельно высокой чистотой – 99,99% производят для использования в лабораторных целях. Для применения в промышленности применяют технически чистый алюминий. При получении алюминиевых сплавов применяют такие добавки, как – железо и кремний. Они не растворяются в расплаве алюминия, а из добавка снижает пластичность основного материала, но в то же время повышает его прочность.

Внешний вид простого вещества

Проведенные расчеты показывают, что плотность чистого металла составляет 2,7 кг на метр кубический.

Как сделать форму для отливки

Перед тем, как расплавить алюминий, готовят болванку для отливки. Существует несколько способов заливки жидкого расплава. Чаще используют открытый и закрытый метод. О каждом стоит рассказать подробнее.

Открытая форма

Когда плавят алюминий по открытой методике, после плавления расплав выливают в подготовленную емкость, например, жестяную банку. Алюминиевую отливку вынимают из банки в горячем виде, когда горячий расплав немного схватится сверху. Достаточно несильно постучать по емкости. Если не нужен слиток заданной геометрии, расплавленный металл выливают на любую ровную огнеупорную поверхность, он хорошо держится, не растекается, внешне напоминает ртуть.

Закрытая форма

Сложные по геометрии отливки получают в специально приготовленных формах. Она должна соответствовать параметрам детали, обычно делается разъемной. Для изготовления формы используют деталь-макет, по которому делают отливку. В качестве формующего материала используют кремнезем, он хорошо трамбуется, его несложно найти. Кремнезем заменяют:

  • смесью речного песка и жидкого стекла;
  • смесь песка, цемента, вместо воды добавляют тормозную жидкость;
  • гипс, он удобен для сложных макетов.

Из гипса делают сплошные бесшовные формы, они одноразовые, их после застывания алюминия разбивают. Деталь-макет изготавливают из воска или пенопласта. Его помещают внутрь емкости, используемой для формы, затем заливают пустоты. Получаются ровные детали, не требующие дополнительной обработки. Когда используется гипс, его сушат в течение пары дней. Гипс боится влаги, разбухает. Он склонен к растрескиванию при высыхании. При контакте с парафином или пенопластом гипс сохраняет свою структуру, не образуется рытвин, раковин.

Соединения алюминия. Алюминий в природе

Окись и гидроокись алюминия являются ярко выраженными амфотерными соединениями. Они легко вступают во взаимодействие как со щелочами, так и с кислотами. Молекулу гидроокиси алюминия можно представить в двух формах — в форме основания Аl(ОН)3 и в форме кислоты Н3АlO3. В тех случаях, когда гидроокись алюминия попадает в кислоту, она ведет себя как основание: Аl(ОН)3 + 3HCl = АlСl3 + 3Н2O При взаимодействии с сильными щелочами гидроокись алюминия реагирует как кислота: Н3АlO3 + 3NaOH = Na3AlO3 + 3Н2O

• Оба уравнения напишите в ионной форме

Получается соль трехосновной ортоалюминиевой кислоты, называемая ортоалюминатом натрия. Но такой состав у солей бывает редко. Чаще всего ортоалюминиевая кислота в щелочной среде распадается по уравнению: Н3АlO3 = Н2O + НАlO2 образуя одноосновную метаалюминиевую кислоту НАlO3. Соли этой кислоты называются метаалюминатами, или просто алюминатами. Реакция между метаалюминиевой кислотой и щелочью выражается следующим уравнением: НАlO2 + NaOH = NaAlO2 + Н2О Совершенно так же ведет себя окись алюминия. В кислотах как основной окисел она образует соли алюминия: Аl2O3 + 6НСl = 2АlСl3 + 3Н2O в щелочах же — как кислотный окисел и образует алюминаты щелочных металлов: Аl2O3 + 2NaOH = 2NaAlO2 + Н2O Алюминат натрия, попадая в кислую среду, претерпевает немедленное превращение: 2NaAlO2 + H2SO4 = Na2SO4 + 2НАlO2

НАlO2 + Н2О = Аl(ОН)3

2Аl(ОН)3 + 3H2SO4 = Al2(SO4)3 + 6Н2O Таким образом, в конечном итоге получаются следующие продукты: 2NaAlO2 + 4H2SO4 = Na2SO4 + Al2(SO4)3 + 4H2O

• Напишите приведенные уравнения реакций в ионной форме.

■ 86. Напишите уравнения реакций, с помощью которых можно осуществить превращения: Аl → АlСl3 → Аl(ОН)3 → NaAlO2 → Al2(SO4)3 (См. Ответ) (все уравнения записывайте в полной и сокращенной ионной форме). 87 Имеются алюминий, соляная кислота, едкий натр. Как можно получить гидроокись алюминия? 88. Какова нормальность раствора едкого натра, если на растворение 39 г гидроокиси алюминия израсходовано 200 мл этого раствора? 89. Докажите при помощи уравнений реакций, что окись и гидроокись алюминия — амфотерные соединения. 90. Получится ли алюминат натрия, и если да, то в каком количестве, если на 15 г сульфата алюминия подействовать 50 г едкого натра? (См. Ответ)

Среди соединений алюминия выделяются лишь некоторые его соли. Особенно важен хлорид алюминия АlCl3, незаменимый в промышленности органического синтеза, где он играет роль катализатора во многих процессах. Сульфат алюминия Al(SO4)3 · 18Н2О применяется как коагулянт при очистке водопроводной воды, а также в производстве бумаги. Двойная соль алюминия и калия — алюмокалиевые квасцы KAl(SO4)2 · 12Н2O обладает высокими вяжущими свойствами и применяется при дублении кожи, а также в медицинской практике как кровоостанавливающее средство. В природе алюминий встречается очень широко и по распространенности элементов стоит на третьем месте. Вследствие высокой химической активности алюминий в природе встречается только в виде соединений. Он входит в состав алюмосиликатов — глины, слюды, полевого шпата, каолина и др. Главной алюминиевой рудой является боксит АlO3 · nН2O, из которого получают алюминий при участии другого соединения алюминия — криолита AlF3 · 3NaF. Твердая кристаллическая окись алюминия, окрашенная примесью окиси железа в желто-бурый цвет, называется корундом. Корунд обладает высокой твердостью, поэтому применяется для изготовления шлифовальных кругов, брусков и т. д. Прозрачные кристаллы корунда, окрашенные незначительными примесями, представляют собой драгоценные камни: рубин — красного, сапфир — синего цвета.

Теплоемкость — железо

Распределение температуры.

Теплоемкость железа С г представляет эквивалентную переменную теплоемкость, приведенную к температуре у поверхности во.

Теплоемкость железа и стали при нагреве увеличивается. Например, при комнатной температуре теплоемкость железа 0 111 ккал / кг-град, при температуре 1200 С она увеличивается до 0 16 ккал / цг-град. Это значит, что при высоких температурах нагрев происходит медленнее и тепла затрачивается больше.

Стр — теплоемкость железа, равная 0 12 кал / кг С.

Учитывая же, что теплоемкость железа или стали равна 0 115, станет вполне понятным, что температура, получающаяся в ( результате трения лент Ферадо о шайбы барабана, достигнет колоссальных размеров и даже водяное, а тем более воздушное охлаждение не в состоянии будет отвести полностью эту теплоту.

Теплоемкость твердых сплавов приблизительно в два раза ниже теплоемкости железа.

Атомная теплоемкость железа.| Схема установки для определения теплопроводности металлических стержней. / — 6 — термопары. 7 — дьюаровский сосуд. 8 — печь. 9 — гальванометр. 10 — стержень. / / — кожух.

На рис. 6 показано изменение атомной теплоемкости железа в зависимости от температуры. Теплоемкость железа достигает максимального значения в точке Аг, затем резко уменьшается; в точке А3 вновь уменьшается, а затем слегка увеличивается в а точке А и снижается в точке плавления. Резкое возрастание теплоемкости вблизи точки Кюри объясняется изменением магнитного состояния железа.

Температура плавления 5 равна 1808 К, энтальпия плавления составляет 1 536 104 Дж / моль. Теплоемкость железа в жидком состоянии превышает его теплоемкость в кристаллическом состоянии примерно на 1 3 Дж / К моль.

Теплоемкость железа и стали при нагреве увеличивается. Например, при комнатной температуре теплоемкость железа 0 111 ккал / кг-град, при температуре 1200 С она увеличивается до 0 16 ккал / цг-град. Это значит, что при высоких температурах нагрев происходит медленнее и тепла затрачивается больше.

В таблицах находим величины теплоемкостей серы п железа. Для железа суд 0 46 кдж / кг град; килограмм-атомная теплоемкость железа равна 0 46 — 55 85 25 7 кдж / кг-ат-град. Килограмм-атомная теплоемкость серы равна 22 6 кдж / кг-ат-град.

При увеличении или уменьшении каким-либо способом количества тепла, содержащегося в теле, увеличивается или уменьшается также температура тела. Но для одинакового изменения температуры в различных по составу телах равного веса требуются различные количества теплоты. Так, например, 1 кг воды требует примерно в 9 раз больше тепла, чем 1 кг железа при одинаковой степени нагре-тости. На этом основании говорят, что теплоемкость железа составляет около одной десятой теплоемкости воды. Способность воспринимать тепло зависит от физических свойств вещества. Количество тепла, необходимое для изменения температуры 1 кг вещества на 1 С, называется удельной теплоемкостью вещества или просто теплоемкостью.

При сообщении телу теплоты или, наоборот, отнятии ее у тела происходит увеличение или уменьшение температуры этого тела. Но для одинакового изменения температуры различных по составу тел равной массы требуются различные количества теплоты. Так, 1 кг воды требует примерно в 9 раз больше теплоты, чем 1 кг железа, при одинаковой степени нагретости. На этом основании говорят, что теплоемкость железа составляет около 0 1 теплоемкости воды и, следовательно, теплоемкость зависит от физических свойств вещества.

В большинстве случаев шаровая молния оплавляет или испаряет несколько граммов или даже доли грамма металла. Автор письма подробно описал размеры лунки и специально отметил, что наплывов металла не было: металл испарился. Предполагая, что углубление было в виде параболоида вращения, находим, что испарилось около 0 22 г металла. Теплоемкость железа равна 0 71 Дж / ( г — К) в твердом и 0 84 Дж / ( г — К) в жидком состоянии. Точки плавления и кипения равны 1500 и 2900 С, а теплота плавления и парообразования — соответственно 269 и 6270 Дж / г. В результате оказывается, что для испарения 0 22 г железа требуется не менее 2 кДж тепла.

Атом и молекула алюминия. Формула алюминия. Строение алюминия:

Алюминий (лат. Aluminium, от лат. alumen – «квасцы») – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Al и атомным номером 13. Расположен в 13-й группе (по старой классификации – главной подгруппе третьей группы), третьем периоде периодической системы.

Алюминий – амфотерный металл. Относится к группе лёгких металлов.

Как простое вещество алюминий при нормальных условиях представляет собой лёгкий металл серебристо-белого цвета.

Молекула алюминия одноатомна.

Химическая формула алюминия Al.

Электронная конфигурация атома алюминия 1s2 2s2 2p6 3s2 3p1. Потенциал ионизации атома алюминия равен 5,984 эВ (577,5 кДж/моль).

Строение атома алюминия. Атом алюминия состоит из положительно заряженного ядра (+13), вокруг которого по трем оболочкам движутся 13 электронов. При этом 10 электронов находятся на внутреннем уровне, а 3 электрона – на внешнем. Поскольку алюминий расположен в третьем периоде, оболочек всего три. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внешняя оболочка представлена s- и р-орбиталями. На внешнем энергетическом уровне атома алюминия находятся два спаренных – на s-орбитали и один неспаренный – на p-орбитали электроны. В свою очередь ядро атома алюминия состоит из 13 протонов и 14 нейтронов.

Радиус атома алюминия составляет 143 пм.

Атомная масса атома алюминия составляет 26,9815386(8) а. е. м.

Алюминий – наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния). Концентрация алюминия в земной коре составляет 8,1 %.

Теплостойкость

Теплостойкость анодных покрытий характеризуется температурой плавления оксида алюминия, которая составляет 2050С, что значительно превосходит температуру плавления чистого алюминия или его сплавов. При повышении температуры оксидные пленки не отслаиваются, но при повышении температуры до 100С возможно растрескивание покрытия, что связано с тем, что коэффициент теплового расширения оксидной пленки около 20% от коэффициента расширения основного металла. Растрескивание оксидной пленки оказывает негативное влияние на коррозионно-защитные свойства покрытий и в некоторой степени ухудшает декоративные качества. Растрескивание покрытий, полученных при использовании хромового электролита значительно ниже, чем покрытий, полученных в серной кислоте. При повышении температуры до 400С начинается процесс дегидратации уплотненных покрытий.

Такие характеристики как тепловое излучение и отражательная способность также находятся в прямой зависимости от характеристик оксидного слоя. Способность излучать тепло для чистого алюминия незначительная, возрастает по мере увеличения толщины оксидного слоя, и при 400С алюминий с толстым оксидным слоем способен излучать тепло с интенсивностью более 70% от излучения абсолютно черного тела, а при рабочей температуре водных и паровых реакторов данная характеристика приближается к 100%. Для увеличения способности алюминиевого изделия отражать тепло толщина оксидной пленки должна быть минимальной и в тоже время в достаточной степени обеспечивать защиту поверхности детали от потускнения. При толщине 0,85 мкм оксидная пленка практически не задерживает ИК излучение и полированная поверхность основного металла отражает до 95% излучения. Очевидно, что отражательная способность в значительной степени зависит от чистоты поверхности материала до анодирования – полированная поверхность с высоким классом чистоты будет отражать тепло эффективнее.

Применение и использование оксида алюминия:

Оксид алюминия используется для производства алюминия, в виде порошка – для огнеупорных, химически стойких и абразивных материалов, в виде кристаллов – для изготовления лазеров и синтетических драгоценных камней (рубины, сапфиры и др.), окрашенных примесями оксидов других металлов.

Примечание:  Фото //www.pexels.com, //pixabay.com

Как возможно научиться писать тексты и зарабатывать на этом удаленно? Например, можете пройти курс «Копирайтинг от А до Я», который подойдет даже начинающим авторам.

Другие записи:

карта сайта

оксид алюминия реагирует кислота 1 2 3 4 5 водауравнение реакций соединения масса взаимодействие оксида алюминияреакции с оксидом алюминия

Коэффициент востребованности
9 498

Особенности технологического процесса

Тигель — это тугоплавкая емкость для разогрева металла. Используются изделия из таких материалов:

В бытовых условиях применяется готовый тигель или емкость из широкой железной трубы. Чтобы изготовить ее, потребуется болгарка и сварочное оборудование. Объем тигля выбирается индивидуально, емкость прогревается равномерно, измельченный металл плавится в результате теплопередачи.

Перед термообработкой нужно уменьшить температуру плавления, чтобы состояние металла менялось быстрее. Для этого алюминий дробят на мелкие фрагменты. Воспламенение или окисление происходит часто после такого измельчения. Состояние образовавшегося оксида алюминия меняется при более высоких температурах. Это вещество удаляется вместе с другими шлаками после переплавки основного металла.

В процессе термообработки придется избегать попадания жидкости в тигель. Резкое испарение воды становится причиной взрыва. При погружении металла в емкость необходимо убедиться в том, что на нем отсутствует влага. Чаще всего плавят алюминиевую проволоку. Сначала материал делится на фрагменты ножницами, затем сдавливается пассатижами. Такой способ позволяет предотвратить воздействие кислорода на металл. Если нет необходимости в получении деталей высокого качества, измельчать сырье не нужно.

Свойства алюминия

В алюминии заложено редкое сочетание таких свойств, как:

  • небольшой вес;
  • пластика, электропроводность;
  • возможность образовывать сплавы с другими металлами.

Поверхность алюминия всегда покрыта тончайшей оксидной плёнкой, которая является очень прочной и не позволяет алюминию подвергаться коррозии. Этот материал и в горячем, и в холодном состоянии легко поддаётся обработке давлением. Такие методы обработки, как прокатка, штамповка, волочение часто производятся на предприятии при производстве тех или иных деталей.

Ещё одна ценность алюминия заключается в том, что он не токсичен, не подвержен горению и не нуждается в дополнительной окраске: это делает его применение в авто- и авиастроении незаменимым элементом. Ковкость алюминия удивляет: из него удалось изготовить лист и очень тонкую проволоку толщиной всего в 4 микрона, а толщины фольги — добиться в три раза тоньше волоса человека.

Благодаря возможности алюминия образовывать соединения с большой группой химических элементов появилась большая группа сплавов. Например, сочетание алюминия и цинка используется в создании корпусов различных видов планшетов и телефонов, алюминий в сочетании магния и кремния используется при производстве различных типов двигателей, в составе элементов шасси и всевозможных двигателей. Различные сплавы применяются и в электроэнергетике.

Современная наука продолжает изучать и изобретать новейшие типы алюминиевых сплавов. Сегодня не существует ни одной отрасли промышленности, где бы не использовался алюминий. Можно с уверенностью сказать, что такие виды промышленности, как авиационная, космическая, энергетическая, автомобильная, пищевая, электронная получили своё современное развитие благодаря алюминию и его сплавам.

Нельзя не упомянуть о таком важном свойстве, как теплопроводность. Ведь именно это свойство металла требуется при производстве систем отопления, электропродукции, в авто- и авиастроении, при изготовлении тормозных систем и тому подобных

Теплоёмкость — это процесс переноса тепловой энергии в физических телах или их частицах от горячих объектов к холодным на основе закона Фурье. Конкурентом алюминия в данной области является медь.

Так какой же металл имеет большую теплопроводность? Это не совсем однозначный вопрос. Известно, что алюминий по теплопроводности уступает меди при средних температурах, но когда заходит речь о низких температурах, а именно при 50 К, тогда теплопроводность алюминия значительно возрастает, в то время как у меди теплопроводность становится ниже. Температура плавления алюминия составляет 933,61 К, это примерно 660 °C, в этот момент свойства Al, такие как теплопроводность и плотность, уменьшаются.

Плотность серебристого металла определяется его температурой и зависит от его состояния. Так, при температуре в 27 °C, плотность алюминия соответственно равна 2697 кг/м3, а при температуре плавления, равной 660 °C, его плотность равняется 2368 кг/м3. Снижение плотности метала в зависимости от температуры обуславливается его расширением при непосредственном нагревании.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации