Андрей Смирнов
Время чтения: ~9 мин.
Просмотров: 0

Основные цветные металлы и сплавы

Свинец и олово в чистом виде и сплавы

Свинец в чистом виде в холодильной или пищевой промышленности почти не применяется, а олово в пищевой отрасли используется как покрытие пищевой тары. При его маркировке «О» означает олово, цифры же — его условный номер. С повышением номера количество примесей повышается. Буквосочетание «пч» указывает на повышенную чистоту материала. В пищевой промышленности с целью лужения консервной жести используется олово, маркируемое как О1 и О2.

В зависимости от назначения свинцовые или оловянные сплавы подразделяются на две категории:

  • баббиты;
  • припои.

Баббиты представляют собой сложные сочетания из свинца и олова, дополнительно в них присутствуют медь, сурьма и прочее. Их маркируют буквой «Б», а также числом, указывающим на процентное соотношение олова в составе. Помимо буквы «Б» могут быть еще буквы, обозначающие особые добавки, например:

  • Н — никелевый баббит;
  • С — свинцовый баббит и прочие.

Полный химический состав установить только по марке баббита невозможно. В отдельных случаях даже количество олова не указывается, хотя в марке БН его присутствует порядка 10 процентов. Есть баббиты и без олова (в частности, свинцово-кальциевые).

Данный материал признан лучшим антифрикционным и используется преимущественно в подшипниках скольжения.

Вторая категория — припои. Они в зависимости от своих признаков делятся по следующим признакам:

  • по температуре расплавления;
  • по ключевому компоненту;
  • по методу плавки и другим особенностям.

В частности, по температуре расплавления припои бывают следующих типов:

  • особо легкоплавкие (температура плавления составляет около 145 градусов);
  • легкоплавкие (от 145 до 450 градусов соответственно);
  • среднеплавкие (от 450 до 1100 градусов);
  • высокоплавкие (1100−1850 градусов);
  • тугоплавкие (температура от 1850 градусов и выше).

Первые две категории используются с целью низкотемпературной пайки, а прочие для высокотемпературной соответственно.

По своему ключевому компоненту припои бывают таких видов:

  • оловянными;
  • алюминиевыми;
  • кадмиевыми;
  • галлиевыми;
  • свинцовыми;
  • цинковыми и т. д.

Цветные металлы и их сплавы могут иметь разное назначение и разные технические характеристики. Определить их особенности можно по нанесенной маркировке, которую нужно уметь расшифровывать.

Области применения легкоплавких сплавов[править]

Во всех без исключения областях применения легкоплавких сплавов, главными востребованными свойствами для применения этих сплавов по назначению, являются — заданная низкая температура плавления. Вторичными свойствами востребованными в областях применения данных сплавов являются — определенная плотность, прочность на разрыв, химическая энертность, вакуумоплотность, теплопроводность. С экономической точки зрения на первое место выходит стоимость сплава и его плотность. В том или ином случае применения легкоплавких сплавов требуется инженерный и экономический расчет для наиболее оптимального решения по примененю сплава. Экономические показатели особенно резко проявляются в крупнотоннажном расходе легкоплавкого сплава той или иной марки. В настоящий момент основными областями применения легкоплавких сплавов являются:

  • Производство и применение жидкометаллических теплоносителей в энергетике и машиностроении.
  • Литейное дело (производство выплавляемых моделей).
  • Системы раннего оповещения возгораний(датчики температуры, клапаны пожаротушения и др).
  • Термометрия (рабочее тело для термометров различных типов).
  • Вакуумная техника (уплотнения, паяные швы и др.).
  • Микроэлектроника (припои, покрытия, датчики температуры, предохранители и др.).
  • Медицина (фиксация костей, протезирование и др.).
  • Использование в качестве расплавляемой металлической смазки.

Медные сплавы, их свойства, характеристики, марки

Изготовление медных сплавов позволяет улучшить свойства меди, не теряя основных преимуществ данного металла, а также получить дополнительные полезные свойства.

Бронза

Сплав меди с оловом. Однако, с развитием технологий появились также бронзы, в которых вместо олова в состав сплава вводятся алюминий, кремний, бериллий и свинец.

Бронзы твёрже меди. У них более высокие показатели прочности. Они лучше поддаются обработке металла давлением, прежде всего, ковке.

Маркировка бронз производится буквенно-цифровыми кодами, где первыми стоят буквы Бр, означающими собственно бронзу. Добавочные буквы означают легирующие элементы, а цифры после букв показывают процентное содержание таких элементов в сплаве.

Буквенные обозначения легирующих элементов бронз:

  • А – алюминий,
  • Б – бериллий,
  • Ж – железо,
  • К – кремний,
  • Мц – марганец,
  • Н – никель,
  • О – олово,
  • С – свинец,
  • Ц – цинк,
  • Ф – фосфор.

Пример маркировки оловянистой бронзы: БрО10С12Н3. Расшифровывается как «бронза оловянистая с содержанием олова до 10%, свинца – до 12%, никеля – до 3%».

Пример расшифровки алюминиевой бронзы: БрАЖ9-4. Расшифровывается как «бронза алюминиевая с содержанием алюминия до 9% и железа до 4%».

Латунь

Это сплав меди с цинком. Кроме цинка содержит и иные легирующие добавки, также и олово.

Латуни – коррозионно устойчивые сплавы. Обладают антифрикционными свойствами, позволяющими противостоять вибрациям. У них высокие показатели жидкотекучести, что даёт изделиям из них высокую степень устойчивости к тяжёлым нагрузкам. В отливках латуни практически не образуются ликвационные области, поэтому изделия обладают равномерной структурой и плотностью.

Маркируются латуни набором буквенно-цифровых кодов, где первой всегда стоит буква Л, означающая собственно латунь. Далее следует цифровой указатель процентного содержания меди в латуни. Остальные буквы и цифры показывают содержание легирующих элементов в процентном соотношении. В латунях используются те же буквенные обозначения легирующих элементов, что и в бронзах.

Пример маркировки латуни двойной: Л85. Расшифровывается как «латунь с содержанием меди до 85%, остальное – цинк».

Пример маркировки латуни многокомпонентной: ЛМцА57-3-1. Расшифровывается как «латунь с содержанием меди до 57%, марганца – до 3%, алюминия – до 1%, остальное – цинк».

Медно-никелевые сплавы

  • Мельхиор —  сплав меди и никеля. В качестве добавок в сплаве могут присутствовать железо и марганец. Частные случаи технических сплавов на основе меди и никеля:
  • Нейзильбер – дополнительно содержит цинк,
  • Константан – дополнительно содержит марганец.

У мельхиора высокая коррозионная устойчивость. Он хорошо поддаётся любым видам механической обработки. Немагнитен. Имеет приятный серебристый цвет.

Благодаря своим свойствам мельхиор является, прежде всего, декоративно-прикладным материалом. Из него изготавливают украшения и сувениры. В декоративных целях является отличным заменителем серебра.

Выпускается 2 марки мельхиора:

  • МНЖМц – сплав меди с никелем, железом и марганцем;
  • МН19 – сплав меди и никеля.

Машиностроительные цементируемые и азотируемые стали.

Цементацию (азотирование) широко применяют для упрочнения средне размерных зубчатых колес, валов коробки передач автомобилей, валов быстроходных станков, шпинделей и др. Для деталей обычно используют низкоуглеродистые (0,15—,25 % С) стали. Содержание легирующих элементов в этих сталях не должно быть слишком высоким, но должно обеспечивать требуемую прокаливаемость поверхностного слоя и сердцевины.

После цементации, закалки и низкого отпуска цементованный слой должен иметь твердость 58-62 НRС, а сердцевина 30-42 НRС. Сердцевина должна обладать высокими механическими свойствами, особенно повышенным пределом текучести, должна быть наследственно мелкозернистой. Для измельчения размера зерна цементируемые стали микролегируют ванадием,титаном, ниобием, цирконием, алюминием и азотом, образующими мелкодисперсные нитриды и карбонитриды, или карбиды, задерживающие рост зерна аустенита.

Цементируемые стали — 20Х, 18ХГТ, 20ХГР, 25ХГМ, 12ХН3А и др.

Машиностроительные улучшаемые стали называются улучшаемыми потому, что подвергаются термической обработке, заключающейся в закалке и отпуске при высоких температурах – улучшению. Это среднеуглеродистые стали (0,3-0,5 % С). Они должны иметь высокую прочность, пластичность, высокий предел выносливости, малую чувствительность к отпускной хрупкости, должны хорошо прокаливаться. Применяются для изготовления коленчатых валов, валы, оси, штоки, шатуны, ответственные детали турбин и компрессорных машин.

Марки – 35, 45, 40Х, 45Х, 40ХР, 40ХН, 40ХН2МА и др.

Рессорно-пружинные стали – марки 70, 65Г, 60С2, 50ХГ, 50ХФА, 65С2Н2А, 70С2ХА и др. Эти стали относятся к классу конструкционных.

Эти стали должны иметь особые свойства в связи с условиями работы пружин и рессор, которые служат для смягчения толчков и ударов. Основное требование – высокий предел упругости и выносливости. Этим условиям удовлетворяют углеродистые стали и стали, легированные элементами, повышающими предел упругости (кремний, марганец, хром, ванадий и вольфрам). Особенностью термической обработки рессорных листов и пружин является проведение после закалки отпуска при температуре 400-500С. Такая обработка позволяет получать наиболее высокий предел упругости.

Шарикоподшипниковые стали – ШХ15 (0,95 –1,05 % С и 1,3-1,65 % хрома). Заэвтектоидное содержание углерода и хром обеспечивают получение после закалки высокой равномерной твердости, устойчивой после истирания, необходимой прокаливаемости и достаточной вязкости. Термическая обработка включает отжиг, закалку и отпуск. Отжиг снижает твердость и позволяет получать мелкозернистый перлит. Закалка проводится при 830-860С, охлаждение в масле, отпуск 150-160 С. Твердость НRС 62-65, структура – бесструктурный мартенсит с равномерно распределенными мелкими карбидами.

Для изготовления деталей крупногабаритных подшипников (диаметром более 400 мм), работающих в тяжелых условиях при больших ударных нагрузках, применяют цементуемую сталь 20Х2Н4А (температура цементации 930-950С в течение 50-170 ч, толщина слоя 5-10 мм).

Износоустойчивые стали – 110Г13Л (0,9-1,3 % С, 11,5-14,5 % марганца). Литая аустенитная сталь, после литья состоит из аустенита и избыточных карбидов (Fe,Mn)3С, выделяющихся по границам зерен, что снижает прочность и вязкость стали. Поэтому литые изделия закаливают от 1100С в воде. При этом карбиды растворяются и структура становится стабильной аустенитной.

Сталь имеет высокую прочность и сравнительно малую твердость. В процессе работы при ударных нагрузках происходит упрочнение (наклеп) поверхности стали при пластической деформации, в результате в поверхностном слое образуется мартенсит. Именно он обеспечивает высокую износостойкость. По мере износа внешнего слоя, мартенсит образуется в следующих слоях. Применяют для трамвайных стрелок, щек камнедробилок, козырьков ковшей, черпаков и т.д.

При циклическом контактно-ударном нагружении и ударно-абразивном изнашивании применяют сталь 60Х5Г10Л, претерпевающую при эксплуатации мартенситное превращение.

Лопасти гидротурбин и гидронасосов, судовых гребневых винтов, работающих в условиях изнашивания при кавитационной эрозии, изготавливают из сталей с нестабильным аустенитом 30Х10Г10 и 0Х14АГ12, испытывающих при эксплуатации частичное мартенситное превращение.

Виды сталей

Сталь представляет собой сплав железа с углеродом, при этом содержание последнего в ней составляет не более 2,14 %, а железа более 50 %. Углерод придает сплаву твердость, но при его избытке металл становится слишком хрупким.

Одним из важнейших параметров, по которому стали делят на различные классы, является химический состав. Среди сталей по данному критерию выделяют легированные и углеродистые, последние подразделяются на мало- (углерода до 0,25 %), средне- (0,25-0,6 %) и высокоуглеродистые (в них содержится больше 0,6 % углерода).

Сталь подлежит обязательной маркировке.

Для уточнения сведений по конкретной марке стали могут использоваться так называемые марочники. 2-е (2003) и 3-е (2011) издания «Марочника сталей и сплавов» под ред. А. С. Зубченко содержат описание около 600 марок сталей и сплавов черных металлов, 4-е (2014) издание — более 700 марок.

Легированные стали, в отличие от нелегированных, имеют несколько иное обозначение, поскольку в них присутствуют элементы, специально вводимые в определённых количествах для обеспечения требуемых физических или механических свойств. К примеру:

  • хром (Cr) повышает твёрдость и прочность
  • никель (Ni) обеспечивает коррозионную стойкость и увеличивает прокаливаемость
  • кобальт (Co) повышает жаропрочность и увеличивает сопротивление удару
  • ниобий (Nb) помогает улучшить кислостойкость и уменьшает коррозию в сварных конструкциях.

Маркировка элементов сталей

Наименование маркировкиНазваниеЗарядовое число атомного ядраОбозначение элемента
ЛБериллий№ 4Be
РБор№ 5B
ААзот№ 7N
ШМагний№ 12Mg
ЮАлюминий№ 13Al
СКремний№ 14Si
ПФосфор№ 15P
ТТитан№ 22Ti
ФВанадий№ 23V
ХХром№ 24Cr
ГМарганец№ 25Mn
ККобальт№ 27Co
ННикель№ 28Ni
ДМедь№ 29Сu
ГлГаллий№ 31Ga
ЕСелен№ 34Se
ЦЦирконий№ 40Zr
БНиобий№ 41Nb
ММолибден№ 42Mo
КдКадмий№ 48Cd
ВВольфрам№ 74W
иИридий№ 77Ir
АССвинец№ 82Pb
ВиВисмут№ 83Bi
ЧРедкоземельные металлы
Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации