Андрей Смирнов
Время чтения: ~18 мин.
Просмотров: 0

Сферы применения и характеристики сплава алюминия и меди

Титановые сплавы.

Титановые сплавы превосходят как алюминиевые, так и магниевые в отношении предела прочности и модуля упругости. Их плотность больше, чем всех других легких сплавов, но по удельной прочности они уступают только бериллиевым. При достаточно низком содержании углерода, кислорода и азота они довольно пластичны. Электрическая проводимость и коэффициент теплопроводности титановых сплавов малы, они стойки к износу и истиранию, а их усталостная прочность гораздо выше, чем у магниевых сплавов. Предел ползучести некоторых титановых сплавов при умеренных напряжениях (порядка 90 МПа) остается удовлетворительным примерно до 600° C, что значительно выше температуры, допустимой как для алюминиевых, так и для магниевых сплавов. Титановые сплавы достаточно стойки к действию гидроксидов, растворов солей, азотной и некоторых других активных кислот, но не очень стойки к действию галогеноводородных, серной и ортофосфорной кислот.

Титановые сплавы ковки до температур около 1150° C. Они допускают электродуговую сварку в атмосфере инертного газа (аргона или гелия), точечную и роликовую (шовную) сварку. Обработке резанием они не очень поддаются (схватывание режущего инструмента). Плавка титановых сплавов должна производиться в вакууме или контролируемой атмосфере во избежание загрязнения примесями кислорода или азота, вызывающими их охрупчивание. Титановые сплавы применяются в авиационной и космической промышленности для изготовления деталей, работающих при повышенных температурах (150–430° C), а также в некоторых химических аппаратах специального назначения. Из титанованадиевых сплавов изготавливается легкая броня для кабин боевых самолетов. Титаналюминиевованадиевый сплав – основной титановый сплав для реактивных двигателей и корпусов летательных аппаратов.

В табл. 3 приведены характеристики специальных сплавов, а в табл. 4 представлены основные элементы, добавляемые к алюминию, магнию и титану, с указанием получаемых при этом свойств.

Какой материал называют твердой медью – Металлы, оборудование, инструкции

Медь относится к материалам высокой проводимости. Это материалы у которых величина удельного сопротивления меньше одной десятой микроома на метр. Для меди эта величина составляет 0,017-0,018мкОм*м. Также медь это проводник по электрическим свойствам и диамагнетик по магнитным свойствам.

Как получают медь?

Медь, используемая в проводах и кабелях достаточно высокой чистоты. Для её получения используют медные руды (сульфидные, оксидные и смешанные). Напомню, что такое сульфидные руды — это ископаемое сырье, которое добывается в природе и состоит из тяжелого металла (руда), серы(сульфид) и разных примесей.

На долю сульфидных руд приходится почти вся добыча и запасы меди (среди рудной добычи). Самыми распространенными минералами по залежам и целесообразности добычи среди сульфидных руд являются — халькопирит (CuFeS2), халькозин (Cu2S), борнит (Cu5FeS4).

халькопирит CuFeS2 34,5 золотой, желтый
халькозин Cu2S 79,8 черный, серый, синий
борнит Cu5FeS4 63,3 красный, медный

В общем, на первом этапе добывают медьсодержащие руды.

Затем добытые руды необходимо очистить от всех примесей и посторонних металлов, чтобы на выходе получилась медь. Для этих целей используют следующие методы: пирометаллургический, гидрометаллургический и электролиз. Например, после пирометаллургического метода мы получим слитки меди, в которых самой меди будет 90 процентов. Неплохо, однако можно и лучше.

Затем эту черновую медь доводят до 99,99% чистоты методом электролитической очистки и мы получаем то, что и используется в энергетике.

Влияние примесей на свойства меди

Вопрос чистоты меди достаточно важен:

  • при наличии 0,02% примеси алюминия электропроводность снижается примерно на 10%. А ведь алюминий достаточно хороший проводник
  • при наличии 0,1% фосфора сопротивление увеличивается на 55%, следовательно проводимость уменьшается, как величина обратная сопротивлению
  • если в меди будет висмут или свинец в количестве более 0,001%, то это вызывает красноломкость (растрескивание при горячей обработке давлением)
  • кислород в меди затрудняет пайку и увеличивает удельное сопротивление. Чтобы этого избежать вводят присадку фосфора
  • водород — образует микротрещины и повышает ломкость

Если присутствует несколько примесей, то бывают ситуации, что они взаимодействуют и их влияние увеличивается в разы.

Для использования меди для передачи электричества наличие примесей оказывает только негативный эффект.

Марки меди для электротехники и вообще

Марки меди состоят из буквы “М”, что значит медь. Далее следует цифра от 0 до 4.

Иногда затем встречается одна из букв, которые характеризуют способ получения металла: к — катодный, р — раскисленная с низким остаточным фосфором, ф — раскисленная с высоким остаточным фосфором, б — бескислородная. Бескислородная это М0, а раскисленная — М1. Существуют множество марок меди, рассмотрим некоторые:

Специальная марка меди — М1Е. Это электротехническая медь, которая выпускается в виде шин, прутков различного диаметра и сечения. Она бывает особо твердой, твердой, полутвердой и мягкой. Проводимость у мягкой меди на пару процентов выше.

Выпускается в форме шин, прутков, круга. Прутья в свою очередь имеют диаметр от 5 до 40мм и форму сечения — круг, квадрат, шестигранник. У данного типа меди ограниченный срок хранения — до года у мягкой и полгода — у твердой.

Медные сплавы в электротехнике

Существуют различные сплавы меди, среди них бронза, латунь и прочие. У некоторых из них нашлось применение и в энергетике. Рассмотрим эти сплавы.

Бронзы — сплавы меди с оловом, алюминием, кремнием, свинцом.

Среди прочих примесей самыми высокими электропроводностями отличаются (в порядке уменьшения электропроводности): кадмиевая, хромистая и бериллиевая бронзы.

Самая же распространенная оловянная бронза имеет низкий показатель электропроводности. Бронзы используются для изготовления контактов, пружинных контактов, пластин в деталях электрических машин, проводов повышенной прочности.

Латуни — сплав меди с цинком (эти два вещества составляют большую часть сплава) и других примесей. Процентная доля цинка доходит до 43%. Используют для пружинящих контактов, штепсельных разъемов.

Манганин — сплав меди с добавкой марганца и никеля. Применяется для изготовления добавочных резисторов и шунтов в измерительной технике. Если вместо меди использовать серебро, то электрические свойства улучшаются.

В данной статье приведены элементарные понятия о применении меди в энергетике, более глубокое изучение возможно при освоении специальной технической литературы по данной теме.

Жидкие и газообразные диэлектрики

Элегаз

Свойства цинковых сплавов

Чтобы понимать какими свойствами должны обладать цинковые сплавы, необходимо знать характеристики цинка. Литейные качества, температура плавления, твердость и другие параметры напрямую зависят от химических и физических свойств цинка. Он представляет собой голубоватый металл. Это вещество не встречается в природных месторождениях в чистом виде. В процессе длительной обработки получается оксид цинка, из которого можно получить чистый металл.

Характеристики и свойства цинка

Перед описанием цинковых сплавов и их применения в различных направлениях производства требуется разобраться со свойствами цинка.

Химические свойства:

  1. При длительном нагревании может вступать в реакции с Н2О и сероводородом. В ее процессе выделяется водород.
  2. Не вступает в контакт с углеродом и азотом.
  3. Смешивается с различными неметаллами — кислородом, фосфором и серой.
  4. При соединении с щелочами, образуются цинкаты (это соли цинковой кислоты).
  5. Если смешивать металл с серной кислотой, могут образовываться различные вещества. Все зависит от количества кислоты.
  6. При очень высокой температуре металл может контактировать с различными газами (йод в газообразном состоянии, хлор и фтор).

Физические свойства:

  1. Представляет собой прочный металл. При нагревании до 100–150°С он становится пластичным. При разогревании более 210 °С металл изменяет свою форму. В сравнении с другими металлами цинк плавится при низкой температуре.
  2. Обладает хорошей теплопроводностью — 116 Вт/м К.
  3. Кипение материала при температуре — 906°С.
  4. Плотность — 7.133 гр./см куб.
  5. Плавление материала — 419°С.
  6. Максимальная прочность при растяжении — 200–250 МН/м2.
  7. Удельная теплота испарения — 114.8 КДж/моль.

Количество примесей в составе металла напрямую зависит от способа добычи, обработки и изначальной породы материала. Часто встречающиеся примеси, содержащиеся в цинке — никель, фтор, хлор и свинец.


Необработанный металл

Как примеси изменяют свойства цинка

Посторонние примеси, содержащиеся в цинке, ухудшают характеристики этого металла (при большом содержании). Первостепенная задача производителей — снизить количество свинца, кадмия и олова в этом металле, чтобы избежать межкристаллической коррозии.

Воздействие примесей на цинк:

  1. Свинец — усиливает растворимость металла в воде.
  2. Медь — ухудшает показатель пластичности. Металл становится более уязвимым для коррозии, однако улучшается его прочность.
  3. Мышьяк — ухудшает прочность и пластичность цинка даже при минимальном содержании.
  4. Олово — увеличивает ломкость готовых отливок.
  5. Кадмий — снижает пластичность металла.
  6. Сурьма — в процессе прокатки при больших температурах, увеличивает прочность и ухудшает пластичность цинка.

Практически все примеси считаются вредными для готовых заготовок. Из-за этого производители в первую очередь проводят ряд процедур, чтобы содержание цинка в готовой отливке было наиболее высоким.

БРОНЗА

Бронзой называется сплав меди с алюминием, кремнием, оловом, бериллием и другими элементами, кроме цинка. Бронзы бывают алюминиевыми, кремниевыми, оловянными, бериллиевыми и т.д. – в зависимости от легирующего элемента.

Маркировка бронзы представляет собой определенную последовательность, начинающуюся с буквосочетания «Бр», после которого указываются легирующие элементы. Легирующие элементы перечисляются, начиная с элемента, который находится в максимальном процентном содержании относительно остальных.

Все бронзы подразделяются на оловянные и безоловянные

Оловянные бронзы применяются в химической промышленности и в качестве антифрикционных материалов благодаря высоким антикоррозийным и антифрикционным свойствам.

Легирующие элементы оловянных бронз – фосфор, цинк, никель. Цинк, входящий в состав оловянных бронз в количестве до 10%, служит для того, чтобы стоимость бронз стала меньше. Фосфор и свинец способствуют повышению антифрикционных свойств бронзы и улучшают их обрабатываемость резанием.

Литейные оловянные бронзы применяются:

· Деформированные бронзы – БрОФ6,5-0,4; БрОЦ4-3; БрОЦС4-4-2,5 – используются в качестве пружин, антифрикционных деталей, мембран

· Литейные бронзы – БрО3Ц12С5, БрО3Ц12С5, БрО4Ц4С17 – используются в антифрикционных деталях, арматуре общего назначения

Безоловянные бронзы – это двойные или многокомпонентные бронзы без олова, в состав которых входя такие элементы как марганец, алюминий, свинец, железо, никель, кремний, бериллий.

Алюминиевые бронзы обладают высокими технологическими и механическими свойствами, коррозийной стойкостью в условиях тропического климата и в морской воде. Для глубокой штамповки на практике используют однофазные бронзы, двухфазные бронзы применяются в виде фасонного литья и подвергают горячей деформации.

Алюминиевые бронзы, обладая более низкими литейными свойствами в сравнении с оловянными бронзами, способствуют более высокой плотности отливок.

Кремнистые бронзы. Кремний, входящий в состав бронзы (до 3,5%), повышает её пластичность и прочность. В сочетании с марганцем и никелем коррозийные и механические свойства кремнистых бронз повышаются. Они широко применяются при работе в агрессивной среде, для изготовления пружинящих деталей, которые должны работать при температуре до 2500°C.

Бериллиевыне бронзы обладают высокой прочностью благодаря термической обработке. Для них характерны высокие характеристики упругости, предела текучести и временного сопротивления, устойчивы к коррозии. Применяются в электронной технике, для пружинящих контактов, мембран, деталей, которые работают на износ.

Свинцовые бронзы представляют собой сплавы, состоящие из включения свинца, который практически не растворяется в меди, и кристаллов меди. Высокие антифрикционные свойства свинцовых бронз позволяют применять их для изготовления деталей, которые работают в условиях больших скоростей и повышенного давления (вкладыши подшипников скольжения). За счёт высокой теплопроводности, свинцовые бронзы БрС30 способствуют отведению теплоты, возникающей при трении.

Бронзы, легированные оловом и никелем, отличаются повышенными коррозийными и механическими свойствами.

Безоловянные бронзы применяются:

· Алюминиевые бронзы – БрАЖ9-4, БрАЖН10-4-4, БрА9Ж3Л, БрА10Ж3Мц2 – применяются для обработки давлением, в качестве деталей химической аппаратуры, арматуры и антифрикционных деталей

· Кремниевые бронзы – БрКМц3-1- применяются в качестве проволоки для пружин, лент, арматуры

· Бериллиевая бронза – БрБ2 – используется как прутки, проволоки для пружин, ленты, полосы

· Свинцовая бронза- БрС30- применяется в антифрикционных деталях

Производство, добыча и запасы меди

Мировая добыча меди в 2000 году составляла около 15 млн т., a в 2004 году — около 14 млн т. . Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т., из них 687 млн т. подтверждённые запасы , на долю России приходилось 3.2 % общих и 3.1 % подтверждённых мировых запасов . Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.

Производство рафинированной меди в России в 2006 году составило 1,009 тыс. тонн, потребление — 714 тыс. тонн. Основными производителями меди в России являются:

Компания тыс. тонн %
425 45 %
351 37 %
166 18 %

Как добывают медь
Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Нашли однажды самородок, который весил 420 т. Наверняка медь была первым металлом, с которым познакомились древние люди. Первые свои орудия делали они из кремниевой и железной руды, из меди, и уже потом научились изготовлять их из бронзы и железа. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н.э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало ее пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах. Добычу меди называют прабабушкой металлургии. Ее добыча и выплавка были налажены еще в Древнем Египте, во времена фараона Рамзеса II (1300—1200 гг. до н.э.). Древние египтяне нагнетали воздух в плавильные печи с помощью мехов, а древесный уголь получали из акации и финиковой пальмы. Они выплавили около 100 т чистой меди. На территории России и сопредельных стран медные рудники появились за два тысячелетия до н.э. Остатки их находят на Урале, в Закавказье, на Украине, в Сибири, на Алтае. В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров. О нем напоминает теперешняя Пушечная улица в Москве. Сейчас известно более 170 минералов, содержащих медь, но из них только 14—15 имеют промышленное значение. Это — халькопирит (он же медный колчедан), малахит, встречается и самородная медь. В медных рудах часто в качестве примесей встречаются молибден, никель, свинец, кобальт, реже — золото, серебро. Обычно мед-ные руды обогащаются на фабриках, прежде чем поступают на медеплавильные комбинаты. Богаты медью Казахстан, США, Чили, Канада, африканские страны — Заир, Замбия, Южно-Африканская республика. Очень крупное Удоканское месторождение медной руды сравнительно недавно обнаружено на севере Читинской области.

Большая часть добываемой меди используется в электротехнике, потому что медь обладает высокой электропроводностью, уступая в этом только серебру, которое, конечно, намного дороже. Миллионы километров проводов опутали земной шар, и большинство из них медные. Медь нужна для производства двигателей, телевизоров, телефонных аппаратов, различных электроприборов, автомобилей, электровозов, холодильников и даже музыкальных инструментов. Ее используют в химической промышленности для борьбы с вредителями садов и огородов, для подкормки растений и животных. Всюду нужна медь.
По объему мирового производства и потребления медь занимает третье место после железа и алюминия.

Сталь.

Сплавы железа с углеродом, содержащие его до 2%, называются сталями. В состав легированных сталей входят и другие элементы – хром, ванадий, никель. Сталей производится гораздо больше, чем каких-либо других металлов и сплавов, и все виды их возможных применений трудно было бы перечислить. Малоуглеродистая сталь (менее 0,25% углерода) в больших количествах потребляется в качестве конструкционного материала, а сталь с более высоким содержанием углерода (более 0,55%) идет на изготовление таких низкоскоростных режущих инструментов, как бритвенные лезвия и сверла. Легированные стали находят применение в машиностроении всех видов и в производстве быстрорежущих инструментов. См. также СТАНКИ МЕТАЛЛОРЕЖУЩИЕ.

Область применения латуни

  • Сплав меди с цинком в процентном соотношении 70 к 30 является самым востребованным и называется техническим. Он достаточно прочен и пластичен. Высокие антикоррозионные свойства позволяют использовать его в деталях и приспособлениях, имеющих непосредственный контакт с водой. Это, как правило, корпуса арматуры, трубы, конденсаторные трубки и другие изделия.
  • При наличии в сплаве только цинка и меди его называют двухкомпонентным, и качество материала будет зависеть от доли цинка. При содержании в сплаве до 20% цинка он называется — красная латунь или томпак, и используется при плакировке поверхности пуль и снарядов. Из такой латуни изготавливают фурнитуру и раструбы некоторых духовых инструментов.

  • Если в сплаве цинка с медью содержится 20–35% легирующего металла, то такая латунь называется желтой и служит для изготовления как технических деталей, так и элементов декора и украшений интерьера. Изготавливают их способом ручного литья. Как правило, это изделия единичного высокохудожественного исполнения. Для их производства создается эскиз, на основании которого изготавливается 3D модель. Затем вручную производится форма или набор форм для различных элементов. Это один из наиболее сложных и продолжительных этапов изготовления отливки. Сплав меди с цинком и другими присадками (олово, марганец, алюминий) плавят в электропечи, а затем подготовленную форму заливают латунью. Это наиболее короткий, но очень важный процесс. Производится он вручную с применением ковшей самых разнообразных конфигураций. Во время заливки форм возможны различные виды брака — пустоты, спаи, недоливы, пригары, шлаковые раковины.
  • После извлечения отливок происходит процесс зачистки от литников, выпоров и заливов. Называют его обрубкой. Затем детали очищают от формовочной смеси, шлифуют, чеканят и полируют. После всего элементы сваривают в единую конструкцию и окончательно полируют. Такая работа требует больших финансовых затрат, но результат того стоит. Чаще всего изготавливают вентиляционные решетки, столики, подсвечники и другие изделия.

  • Сплав из меди и цинка отличается красивым золотистым цветом. Однако без защитной обработки быстро окисляется на воздухе, приобретая благородный тусклый с зеленцой оттенок. В большинстве случаев это не портит изделие. При желании окисную пленку можно убрать, обработав его азотной кислотой, а потом промыть в проточной воде. Изделия из латуни долговечны и будут долгие годы радовать своим видом не одно поколение.

Области применения

В процессе плавления латунных сплавов применяют цинковый лом в равных соотношениях с медью. Использование сплава характеризуется его видами:

  1. Подверженные деформации. Содержание цинка в таком сплаве не превышает 10%. Он называется томпак. Благодаря такому составу повышается пластичность, а также эффект скольжения по металлическим поверхностям. Не подвергается коррозии, можно сваривать со стальными изделиями, по цвету напоминает золото.
  2. Литейные. Содержат медь в количестве от 50% до 80%, устойчив к действию коррозии, не изменяет свою структуру при трении об металлические поверхности, в результате повышения прочности и снижения хрупкости. При плавлении может принимать разнообразные формы.
  3. При добавлении свинца получают автоматные сплавы. Обрабатывается стальными резцами на специальных станках с высокой скоростью вращения заготовки.

Медно-цинковый сплав используют для изготовления:

  • частей механизмов промышленного оборудования, а также систем теплообмена;
  • штампованных элементов корабельной техники, в автомобилестроении, строительстве самолетов, а также при изготовлении часовых механизмов.
  • декорирования интерьера, бижутерии;
  • сантехнических изделий, которые не подвергаются действию высоких температур.
  • крепежных материалов, саморезов, шурупов;
  • тепловых приборов;
  • церковных принадлежностей;
  • корпусов компасов;
  • ювелирных подделок, похожих на золотые изделия.

Изделия из сплава меди с цинком

Основные технологические процессы получения металла:

1. Для обогащения руды используют метод флотации, при помощи которой соединения меди и пустой породы проходят смачивание. Отдельно подготавливается суспензия с флотационным агентом и соединяется с размельченной рудой. В качестве флотационного агента можно использовать пихтовое масло, благодаря которому на поверхности рудных частичек образуется пленка. На поверхности руды собираются пузырьки, они появляются от продувки воздухом, затем образуется пена. На дно опускается пустая порода, не прошедшая смачивания маслом. До 30% меди находится в собранной и высушенной пене – концентрате.

Подробнее о методе флотации

2. Сернистый газ получается в результате обжига концентрата. Таким образом, получается обожженный медный концентрат и серная кислота, без содержания алюминия. Затем в отражательных печах получается медный штейн, ингредиент, в состав которого входит сульфид железа и медь.


Заливка штейна в конвертер

3. Для продувки штейна предусмотрены конвертеры с кислородом, в них получается черновая медь. У такого ингредиента содержится 1,5% примеси без серебра и алюминия. Во время продувки участвует кварцевый песок, окись железа образуется благодаря переходящим сульфидам, после этого образуется шлак. Серная кислота получается благодаря поступлению сернистого газа.

4. Черновая медь очищается при помощи огневого или электролитического метода. Деревянные жерди используются при огневом способе, а затем происходит пропускание воздуха. Примеси выводятся благодаря окислению жердей кислородом воздуха. Электролитический метод включает в себя установление меди в качестве анода, а медные листы служат в виде катода. Анод начинается растворяться, когда проходит ток, при этом на дне происходит оседание меди на катоде. Изделия из меди и серебра, имеющие вес 60-90 кг можно получить в течение 10 дней. В это время дно ванны наполняется шламом – осадком примеси. Чаще всего шлам состоит из серебра – 35%, золота – 1% и селена – 6%, без железа и свинца, а вот алюминия здесь не обнаружено.

Источники меди для вторсырья

Экономия ресурсов – важная экологическая и технологическая задача. Медь – слишком ценный элемент, чтобы запросто им разбрасываться. Поэтому при утилизации бытовых устройств и приборов (телевизоров, холодильников, компьютерной техники) нужно срезать все медь содержащие элементы и сдавать их на пункты сбора вторсырья. На производствах должен быть организован централизованный сбор списанных силовых кабелей и трансформаторов, электродвигателей, прочих медь содержащих деталей и устройств. Определённое содержание меди есть в испорченных люминесцентных лампах, что тоже стоит учитывать при утилизации.

Медь и медные сплавы, освоенные человечеством на самой заре цивилизации, остаются востребованными материалами и в технологическую эпоху, основу которой составляет железо. Современное промышленное производство невозможно себе представить без использования цветных металлов

В дальнейшем потребность в меди её сплавах будет только расти, поэтому очень важно относиться к данным материалам экономно и использовать их рационально

Рейтинг: /5 —
голосов

Общие особенности

В зависимости от вида легирующих компонентов медные сплавы могут иметь высокие электро- и теплопроводность, пластичность и прочность при высоких температурах, могут быть устойчивыми к износу и агрессивным средам, а также высокоупругими. Сплавы меди с другими металлами обычно содержат не более 10 % основного легирующих элемента, а остальные компоненты (в сложных сплавах) — в ещё меньших количествах. Исключением является лишь латуни, содержащие цинк в значительно больших пропорциях. В присутствии больших количеств легирующих элемента сплавы становятся хрупкими.

Добавки к двойным медно-цинковым сплавам в незначительных количествах олова, алюминия, никеля, кремния, марганца, железа, свинца повышают прочность, твёрдость, обрабатываемость резанием, предоставляют хорошие литейные свойства.

Медные сплавы получают сплавлением меди с другими химическими элементами или их сплавами (лигатурами) в пламенных или электрических (дуговых, индукционных, высокочастотных, печах сопротивления) печах. При плавке для защиты от окисления используют древесный уголь, флюс или плавку проводят в вакууме. Некоторые медные сплавы получают путём электролиза комплексных водных растворов или диффузии в поверхностные слои металлических изделий. Однофазные низколегированные сплавы легче деформируются при комнатной температуре, чем высоколегированные — с двухфазной структурой. При высоких температурах двухфазные сплавы деформируются легче однофазных.

Термическая обработка (закалка и старение) медных сплавов в ряде случаев повышает прочность, увеличивает пластичность (закалка), уменьшает внутренние напряжения (отжиг).

Различают медные сплавы:

  • литейные, которым свойственны значительная жидкотекучесть и небольшая усадка;
  • деформируемыe, которые обрабатывают давлением в горячем или холодном состоянии;
  • порошковые.

Медные сплавы используют преимущественно в качестве антифрикционных, как электротехнические, жаропрочные, конструкционные, коррозионностойкие и пружинные материалы. Применяют их в машино-, авиа-, приборо- и судостроении, в электротехнической промышленности, при изготовлении пароводяной арматуры, художественных изделий, посуды и т. п.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации