Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 0

Отечественная сапр-платформа nanocad plus 10: универсальный комплекс для тех, кто проектирует

Классификация

По ГОСТ

ГОСТ 23501.108-85 устанавливает следующие признаки классификации САПР:

  • тип/разновидность и сложность объекта проектирования
  • уровень и комплексность автоматизации проектирования
  • характер и количество выпускаемых документов
  • количество уровней в структуре технического обеспечения

Классификация с использованием английских терминов

В области классификации САПР используется ряд устоявшихся англоязычных терминов, применяемых для классификации программных приложений и средств автоматизации САПР по отраслевому и целевому назначению.

По отраслевому назначению

  • MCAD (англ. mechanical computer-aided design) — автоматизированное проектирование механических устройств. Это машиностроительные САПР, применяются в автомобилестроении, судостроении, авиакосмической промышленности, производстве товаров народного потребления, включают в себя разработку деталей и сборок (механизмов) с использованием параметрического проектирования на основе конструктивных элементов, технологий поверхностного и объемного моделирования (SolidWorks, Autodesk Inventor, КОМПАС, CATIA);
  • EDA (англ. electronic design automation) или ECAD (англ. electronic computer-aided design) — САПР , радиоэлектронных средств, интегральных схем, печатных плат и т. п., (Altium Designer, OrCAD);
  • AEC CAD (англ. architecture, engineering and construction computer-aided design) или CAAD (англ. computer-aided architectural design) — САПР в области архитектуры и строительства. Используются для проектирования зданий, промышленных объектов, дорог, мостов и проч. (Autodesk Architectural Desktop, AutoCAD Revit Architecture Suite, Bentley MicroStation, Bentley AECOsim Building Designer, Piranesi, ArchiCAD).

По целевому назначению

По целевому назначению различают САПР или подсистемы САПР, которые обеспечивают различные аспекты проектирования.

  • CAD (англ. computer-aided design/drafting) — средства автоматизированного проектирования, в контексте указанной классификации термин обозначает средства САПР, предназначенные для автоматизации двумерного и/или трехмерного геометрического проектирования, создания конструкторской и/или технологической документации, и САПР общего назначения.
    • CADD (англ. computer-aided design and drafting) — проектирование и создание чертежей.
    • CAGD (англ. computer-aided geometric design) — геометрическое моделирование.
  • CAE (англ. computer-aided engineering

    CAA (англ. computer-aided analysis) — подкласс средств CAE, используемых для компьютерного анализа.

    ) — средства автоматизации инженерных расчётов, анализа и симуляции физических процессов, осуществляют динамическое моделирование, проверку и оптимизацию изделий.

  • CAM (англ. computer-aided manufacturing) — средства технологической подготовки производства изделий, обеспечивают автоматизацию программирования и управления оборудования с ЧПУ или ГАПС (Гибких автоматизированных производственных систем). Русским аналогом термина является АСТПП — автоматизированная система технологической подготовки производства.
  • CAPP (англ. computer-aided process planning) — средства автоматизации планирования технологических процессов, применяемые на стыке систем CAD и CAM.

Многие системы автоматизированного проектирования совмещают в себе решение задач, относящихся к различным аспектам проектирования CAD/CAM, CAD/CAE, CAD/CAE/CAM. Такие системы называют комплексными, или интегрированными.

С помощью CAD-средств создаётся геометрическая модель изделия, которая используется в качестве входных данных в системах CAM и на основе которой в системах CAE формируется требуемая для инженерного анализа модель исследуемого процесса.

САПР в стоматологии

Преимущественное большинство современных стоматологических клиник использует CAD. CAD-системы в стоматологии применяются для производства высококачественных зубных протезов, уже более чем десять лет используются для изготовления абатментов для имплантов, коронок и всевозможных протезов, причем все эти изделия отличаются отменным качеством и высокой точностью. Суть данной технологии заключается в том, что изначально проводится трехмерное моделирование создаваемой конструкции на компьютере, и только потом уже, используя проектную модель, осуществляют изготовление на фрезерном блоке.

Таким образом, стоматологи получают массу преимуществ за счет применения в своей работе технологии CAD. CAD-системы в стоматологии применяются чаще всего следующим образом:

  • сначала врач проводит снятие слепка, который потом отправляется в лабораторию;
  • после доставки слепок помещают в специализированный сканер, создающий модель будущего изделия;
  • в дело вступает CAD-система: 3D-модель превращается в специализированный файл, который будет служить источником данных для фрезерного блока;
  • используя полученный файл, на фрезерном блоке осуществляют производство каркаса из специальной заготовки, сделанной из оксида циркония;
  • в конечном итоге получившийся каркас тщательно покрывается керамической массой и запекается.

CAD/CAM-системы в стоматологии позволяют изготавливать коронки из диоксида циркония, которые отличаются от металлосодержащих изделий массой преимуществ. Сами по себе эти изделия практически не имеют никаких отличий по цвету от естественных зубов, так как выбор оттенка осуществляется еще в процессе производства каркаса. Далее каркас тщательно покрывается особой керамической массой, имеющей полупрозрачную и светопроницаемую структуру, а также включает в свою палитру достаточно широкий спектр цветов, благодаря чему получается изготавливать коронки, похожие на естественные зубы.

Сам по себе оксид циркония отличается высокой биосовместимостью, даже если сравнивать его с драгоценными металлами, и представляет собой гиппоаллергенный материал, что подтверждено в процессе проведения целого ряда научных клинических исследований. Однако на самом деле коронки, основанные на каркасе из оксида циркония, являются далеко не единственным видом изделий, для изготовления которых используются CAD/CAM-системы. ЧПУ-станок на основе таких технологий позволяет изготавливать:

  • различные мостовидные протезы;
  • временные коронки;
  • индивидуальные абатменты.

Помимо уже указанного диоксида циркония, в процессе изготовления могут применяться самые разнообразные материалы, включая пластмассу, воск, кобальт и титан, хром.

What is CAD?

Computer-aided design is a way to digitally create 2D drawings and 3D models of real-world products—before they’re ever manufactured. With 3D CAD, you can share, review, simulate, and modify designs easily, opening doors to innovative and differentiated products that get to market fast.

In 1985 Dr. Samuel Geisberg formed Parametric Technology Corporation (PTC) and defined a radically new approach for CAD software. This innovation produced the first parametric and feature-based solid modeling CAD software in the market, which today is known as Creo, the industry standard for product design and development software.

More than 30 years later, the product development industry is beginning to adopt the next wave of technology driven innovation, as so many other industries already have.

Общепринятая международная классификация

Современная классификация распределяет их на несколько категорий:

  • чертежно-ориентированные системы, которые впервые появились в семидесятые года прошлого века, но до сих пор могут использоваться в некоторых ситуациях;
  • системы, создающие трехмерные электронные модели объектов, за счет чего появляется возможность решения различных задач, связанных с моделированием вплоть до процедуры производства;
  • системы, с помощью которых поддерживается концепция полного электронного описания объекта.

Последний тип представляет собой технологию, обеспечивающую разработку и последующую поддержку информационной электронной модели на протяжении всего ее жизненного цикла, включая концептуальное и рабочее проектирование, полноценный маркетинг, производство, технологическую подготовку, эксплуатацию, а также утилизацию и ремонт.

В современной технической и учебной литературе, а также различных государственных стандартах аббревиатура САПР трактуется как «Система автоматизированного проектирования», но при этом наиболее точно здесь соответствует понятие «Система автоматизации проектных работ», но оно является более тяжелым для восприятия, поэтому встречается на порядок реже. Нередко случается так, что, проводя проектирование в системах CAD, можно заметить некорректное толкование «Система автоматического проектирования», хотя на самом деле это по своей сути ошибочно. Не стоит забывать о том, что понятие «автоматический» предусматривает полностью самостоятельную работу системы без необходимости в каком-либо участии человека, в то время как САПР все-таки требует исполнения некоторых задач самим человеком, а полная автоматика относится только к отдельным процедурам и операциям.

Не совсем верным является также такое понятие, как «Программное средство автоматизированного проектирования», так как его можно назвать слишком узконаправленным. Конечно, на данный момент САПР рассматривается исключительно в качестве прикладного программного обеспечения, необходимого для проведения проектной деятельности, однако на самом деле в отечественной литературе и различных государственных стандартах САПР рассматривается как более объемное понятие, в которое входят не только программные инструменты.

Структура

Как и любые другие сложные системы, CAD включают в себя несколько подсистем, которые могут быть проектирующими или обслуживающими.

Первые занимаются непосредственным выполнением разнообразных проектных работ. В качестве примера таковых можно привести подсистемы трехмерного геометрического моделирования всевозможных механических объектов, схемотехнического анализа, создания конструкторской документации или же трассировки соединений печатных плат.

Обслуживающие подсистемы предназначаются для того, чтобы обеспечить нормальную работоспособность проектирующих, а их комбинацию довольно часто среди специалистов принято называть системной средой САПР. В качестве типичных обслуживающих подсистем часто используются базы управления проектными данными, всевозможные подсистемы разработки и последующего сопровождения программного обеспечения CASE, а также обучающие, предназначенные для облегчения освоения пользователями технологий, реализованных в CAD.

Структурирование по различным аспектам позволило появиться видам обеспечения САПР, которых сегодня выделяют всего семь:

  • техническое, которое включает в себя различные аппаратные средства;
  • математическое, объединяющее всевозможные математические методы, алгоритмы и модели;
  • программное, представляющее собой компьютерные программы САПР;
  • информационное, в состав которого включены базы данных, системы управления этими базами, а также множество другой информации, использующейся в процессе проектирования;
  • лингвистическое, выражающееся в виде языков общения между ЭВМ и проектировщиками, языками обмена данными между техническими средствами CAD и языками программирования;
  • методическое, в которое входят всевозможные технологии проектирования;
  • организационное, выполненное в виде должностных инструкций, штатных расписаний и прочей документации, при помощи которой осуществляется регламентирование работы проектных предприятий.

Стоит отметить, что вся совокупность информации, которая применяется в процессе проектирования, специалистами называется информационным фондом CAD. База данных представляет собой упорядоченную совокупность информации, в которой отражаются различные характеристики объектов и их взаимосвязь в определенной предметной области. Доступ к базе данных для изучения, записи и последующей корректировки данных проводится через СУБД, а совокупность СУБД и БД принято называть БнД, то есть банк данных.

Ссылки

  • . — Первое русскоязычное печатное издание по программам, производителям и продавцам САПР. Издается с 2005 г. На сайте издания представлена первая в рунете база данных по теме издания. Дата обращения 5 мая 2012.
  • . — Содержит термины, понятия и аббревиатуры, используемые в отрасли автоматизации проектирования, управления жизненным циклом продукта (PLM) и смежных с ними дисциплинах. Энциклопедия поддерживается порталом isicad. Дата обращения 27 февраля 2013.
  • . — CAD-портал под редакцией Виктора Ткаченко, статьи, программы, документация, новости, обзоры. Дата обращения 27 февраля 2013.

Примечания

  1.  (недоступная ссылка). Дата обращения 28 января 2015.
  2. Pottmann, H.; Brell-Cokcan, S. and Wallner, J. Discrete surfaces for architectural design // Wayback Machine, pp. 213–234 in Curve and Surface Design, Patrick Chenin, Tom Lyche and Larry L. Schumaker (eds.), Nashboro Press. — ISBN 978-0-9728482-7-5..
  3. Пройдаков, Э. М. Теплицкий, Л. А. Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. — М.: Русская Редакция, 2004. — ISBN 5-750-20195-3. (Словарь поставляется в электронной версии с ABBYY Lingvo x3 для ПК)
  4. Масловский, Е. К. Англо-русский словарь по вычислительной технике и программированию (The English-Russian Dictionary of Computer Science). — ABBYY Ltd, 2008.. (Словарь поставляется в электронной версии с ABBYY Lingvo x3 для ПК и доступен на сайте  (недоступная ссылка). Дата обращения 3 ноября 2010. )
  5. Воскобойников, Б. С., Митрович, В. Л. Англо-русский словарь по машиностроению и автоматизации производства. — М.: РУССО, 2003. — 1008 с. — ISBN 5-887-21228-4.. (Словарь поставляется в электронной версии с ABBYY Lingvo x3 для ПК)
  6. Лисовский, Ф. В. Новый англо-русский словарь по радиоэлектронике. — М.: РУССО, 2005. — 1392 с. — ISBN 5-887-21289-6.. (Словарь поставляется в электронной версии с ABBYY Lingvo x3 для ПК)
  7.  (недоступная ссылка)
  8. Малюх В. Н. Введение в современные САПР: Курс лекций. — М.: ДМК Пресс, 2010. — 192 с. — ISBN 978-5-94074-551-8.
  9. Норенков И. П. Основы автоматизированного проектирования: учеб. для вузов. — 4-е изд., перераб. и доп. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2009. — 430 с. — ISBN 978-5-7038-3275-2.

Классификация САПР

В числе распространенных критериев классификации САПР — отраслевое назначение соответствующих систем. Так, выделяют:

— автоматизированное проектирование инфраструктуры машиностроения;

— САПР для электронного оборудования;

— автоматизированное проектирование в сфере строительства.

Первый тип систем САПР используется в широком спектре отраслей — в автомобилестроении, авиастроении, судостроении, в сегментах выпуска различных товаров народного потребления. Соответствующая инфраструктура применяется в целях разработки как отдельных деталей, так и различных механизмов с использованием всевозможных подходов в рамках параметрического проектирования, моделирования.

Второй тип САПР применяется для проектирования готового электронного оборудования, а также отдельных его элементов, например процессоров, интегральных микросхем и прочих видов аппаратного обеспечения.

Третий тип САПР задействуется в целях проектирования различных зданий, сооружений, элементов инфраструктуры.

Следующий критерий, по которому могут быть классифицированы системы автоматизированного проектирования, программирования, — целевое назначение САПР. Так, выделяют:

— средства проектирования, задействуемые в целях автоматизации двумерных либо трехмерных геометрических моделей, формирования конструкторской документации;

— системы, применяемые в целях разработки различных чертежей;

— САПР, созданные для геометрического моделирования;

— системы, предназначенные для автоматизации расчетов в рамках инженерных проектов, а также динамического моделирования;

— САПР, предназначенные для осуществления компьютерного анализа различных параметров по проектам;

— средства автоматизации, используемые в целях технологической оптимизации проектов;

— САПР, используемые в целях автоматизации планирования.

Стоит отметить, что данную классификацию следует считать условной.

Автоматизированная система технологического проектирования может включать в себя самый широкий спектр функций из числа тех, что перечислены выше, и не только. Конкретный перечень возможностей САПР определяет прежде всего разработчик соответствующей системы. Рассмотрим, какие в принципе задачи он может решать.

VR в промышленности

Интерес к технологии виртуальной реальности во время пандемии коронавируса вырос. Причем не только со стороны крупных промышленных корпораций, где простой в работе стоит больших денег, но и со стороны ритейлеров, дизайн-бюро и даже госучреждений. В первую очередь это обусловлено потребностью поддерживать бизнес-коммуникации дистанционно. К конференциям в Zoom и Skype добавились совещания в виртуальных кабинетах и лекториях. Технология активно развивается: если еще 20 лет назад она была доступна только мировым корпорациям типа Boeing и Lockheed Martin, то сейчас шлемы виртуальной реальности можно найти в обычном магазине электроники.
Сегодня мы поговорим о том, как технологию используют в промышленности. В нашей недавней статье про шлемы мы получили запрос на раскрытие темы с примерами. Всех интересующихся просим под кат.

Обзор уникальных функций

Поддержка российских стандартов

Рис. 7. Платформа nanoCAD Plus преднастроена на работу по российским стандартам проектирования (ГОСТы серий 2.3XX)

Нормааудит чертежа и стандартизация организации

Видео 5. Уникальная функция НОРМААУДИТ платформы nanoCAD Plus позволяет проверить корректность ссылок из чертежа на нормативно-техническую документацию.NormaCS

Работа с растровыми подложками: привязки и редактирование

  • инструменты повышения качества растровых подложек: устранение перекосов и нелинейных искажений, которые привнесла бумага в процессе хранения документа;
  • инструменты редактирования растра: самые обычные ластик и карандаш позволяют быстро изменить типовые проекты или привязать их к существующей документации;
  • инструменты автоматизированного скалывания информации: пользователь может привязываться к характерным точкам растрового чертежа (например конечным точкам, пересечениям, центрам) как к обычным векторным объектам.

Видео 6. В платформе nanoCAD Plus растровые подложки являются полноценными участниками процесса разработки документации – редактируйте растры прямо из среды nanoCAD, привязывайтесь к примитивам и выпускайте новые версии документов.

Работа со сверхбольшими облаками точек (3D-сканирование)

Видео 7. Платформа nanoCAD Plus напрямую поддерживает популярные форматы лазерного сканирования и может использоваться как просмотрщик сверхбольших облаков точек.

Поддержка IFC-формата (OpenBIM)

Видео 8. Платформа nanoCAD Plus позволяет объединять в трехмерном пространстве различные данные: информационные BIM-модели, результаты лазерного сканирования (облака точек), трехмерные DWG-данные и т.д.

Размерности 3D-моделей

Видео 9. Удобные средства навигации и возможность работать с нагруженными моделями позволяют пользователям создавать всё более и более сложные модели и проекты.

Классификация САПР

Принятое в отечественной инженерной практике понятие САПР носит общий характер. Оно включает в себя все возможности программного проектирования. Однако удобнее пользоваться англоязычными версиями, описывающими виды и технологии выполняемых работ более детально. Наиболее популярные термины означают:

  1. CAD системы — означает компьютерную поддержку проектирования (сomputer-aided design). Программы с пакетом модулей для создания трехмерных объектов с детализацией их особенностей и возможностью получения полного комплекта конструкторско-проектной документации.
  2. CAM системы — переводится как компьютерная поддержка производства (computer-aided manufacturing). Прикладные программы для реализации проектов. С их помощью прописывают алгоритм работы станков с ЧПУ. В качестве основы используется трехмерная модель, сделанная по стандартам CAD.
  3. CAE системы — класс продуктов для компьютерной поддержки расчетов и инженерного анализа (computer-aided engineering). Появление возможности создавать твердотельную модель требовала детального ее описания, прогнозирование эксплуатационных нагрузок, включая воздействие температуры, сопротивления среды.

Автоматизированная система проектирования в процессе эволюции разделилась на отдельные направления, в рамках которых решались узкоспециализированные задачи. Расширялся и арсенал инструментов для достижения цели. Можно на каждом этапе производства выбрать систему, наиболее подходящую в конкретном случае. Технология создания модели 3d в САПР значительно ускорило запуск новых изделий, которые проектируется с заданными характеристиками. Твердотельный прообраз проверяется и испытывается с достаточной точностью виртуально, минимизируя расходы на реальном тестировании.

Методы электронного проектирования проникают в отдельные сферы деятельности, учитывая характер производства. Подчиняясь общим правилам и нормам создаются новые направления развития. Так в 2012 госкорпорация «Росатом» перешла на Единую отраслевую систему документооборота (ЕОСДО). Программа позволила систематизировать проектную документацию. Проще стал доступ к электронному архиву. В результате повысилась производительность труда, сохранность информации, надежность ее защиты.

Примечания

  1.  (недоступная ссылка). Дата обращения 28 января 2015.
  2. Pottmann, H.; Brell-Cokcan, S. and Wallner, J. Discrete surfaces for architectural design // Wayback Machine, pp. 213–234 in Curve and Surface Design, Patrick Chenin, Tom Lyche and Larry L. Schumaker (eds.), Nashboro Press. — ISBN 978-0-9728482-7-5..
  3. Пройдаков, Э. М. Теплицкий, Л. А. Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. — М.: Русская Редакция, 2004. — ISBN 5-750-20195-3. (Словарь поставляется в электронной версии с ABBYY Lingvo x3 для ПК)
  4. Масловский, Е. К. Англо-русский словарь по вычислительной технике и программированию (The English-Russian Dictionary of Computer Science). — ABBYY Ltd, 2008.. (Словарь поставляется в электронной версии с ABBYY Lingvo x3 для ПК и доступен на сайте  (недоступная ссылка). Дата обращения 3 ноября 2010. )
  5. Воскобойников, Б. С., Митрович, В. Л. Англо-русский словарь по машиностроению и автоматизации производства. — М.: РУССО, 2003. — 1008 с. — ISBN 5-887-21228-4.. (Словарь поставляется в электронной версии с ABBYY Lingvo x3 для ПК)
  6. Лисовский, Ф. В. Новый англо-русский словарь по радиоэлектронике. — М.: РУССО, 2005. — 1392 с. — ISBN 5-887-21289-6.. (Словарь поставляется в электронной версии с ABBYY Lingvo x3 для ПК)
  7.  (недоступная ссылка)
  8. Малюх В. Н. Введение в современные САПР: Курс лекций. — М.: ДМК Пресс, 2010. — 192 с. — ISBN 978-5-94074-551-8.
  9. Норенков И. П. Основы автоматизированного проектирования: учеб. для вузов. — 4-е изд., перераб. и доп. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2009. — 430 с. — ISBN 978-5-7038-3275-2.

Дополнительные средства nanoCAD

» Мы запускаем серию полезных статей, посвященных утилитам nanoCAD. С их помощью процесс подготовки чертежей станет проще и быстрее.
Вы узнаете:
• как использовать инструмент Дополнительные средства nanoCAD для экспресс- редактирования;
• как быстро заменить слово при помощи команды Найти и заменить;
• как соединить разбитые на примитивы dwg-таблицы с помощью команды Распознавание таблиц;
• как за один клик экспортировать часть графики в новый файл;
• какие существуют способы создания массива объектов.
Следите за каналом. А сегодня мы обсудим Дополнительные средства nanoCAD.

F.A.Q САПР для машиностроения — система автоматизированного проектирования

Зачем внедрять САПР?

В настоящее время на предприятиях машиностроения повсеместно используются системы автоматизированного проектирования (САПР) различных типов. За многолетнюю историю использования они доказали свою эффективность и экономическую целесообразность. Однако, большинство производителей систем так и не могут дать четкого и однозначного ответа, какой экономический эффект принесет покупка их программного обеспечения?

При выборе той или иной системы трудно однозначно понять, какое решение будет наиболее подходящим для организации и зачем вообще необходимо внедрение САПР? Для ответа на эти вопросы нужно, прежде всего, определить факторы, за счет которых достигается экономическая эффективность внедрения и использования системы, а также обратиться к мировому опыту использования САПР.

Одним из лидеров, проводящих исследования в данной области, является международное исследовательское агентство Aberdeen Group, которое, совместно с компанией Autodesk, начиная с 2007 года, выпустило ряд отчетов на эту тему:

  • Дополнительные стратегии построения цифровых и физических прототипов: как избежать кризисной ситуации при разработке продуктов?
  • Системное проектирование: Разработка новых продуктов для мехатроники.
  • Управление техническими изменениями 2.0: Интеллектуальное управление заявками на изменения для оптимизации бизнес-решений.
  • Проектирование без границ. Рост доходов благодаря применению 3D-технологий.

Организации-участники исследований были разделены на три группы в соответствии с тем, насколько они выполняют свой календарный план и бюджет: 20% — лучшие в своем классе компании (компании-лидеры), 50% — компании со средними показателями по отрасли и 30% — компании с результатами ниже среднего. Затем был проведен сравнительный анализ, чтобы понять, какие процессы, способы организации работы и технологии чаще использовались лучшими в своем классе компаниями.

По результатам исследований, основными экономическими факторами, влияющими на экономическую эффективность использования САПР, являются время и денежные затраты на разработку прототипов продукции машиностроительных организаций, а также время и затраты на внесение изменений в прототипы и выпускаемые продукты.

Компании-участники исследования были также опрошены по поводу основных факторов, которые на их взгляд, являются самыми значимыми предпосылками использования средств автоматизированного проектирования.

  • 91% респондентов поставили на первое место сокращение времени проектирования изделий,
  • на втором месте с 38% — сокращение затрат на проектирование,
  • далее следуют: увеличение технологичности проектируемых продуктов (30%), ускорение доработок изделий в соответствии с требованиями Заказчиков (кастомизации продуктов) — 15%.

Интересной особенностью является то, что несмотря на большие возможности по сокращению затрат, как и в ранее проведенных исследованиях, ключевым фактором остается возможность сокращения времени проектирования.

Для чего используют САПР лучшие машиностроительные компании?

Функционал САПР, который используется машиностроительными предприятиями для достижения вышеописанных эффектов, можно разбить на следующие основные области:

  • Разработка концепции проекта в цифровом формате.
  • Создание, оптимизация и утверждение проектов.
  • Проектирование электрических и механических деталей.
  • Управление данными о продукте.
  • Визуализация решений по продукту, обзоров, продаж и маркетинга.

Следует отметить, что функционал управления данными о продукте относится больше к PDM/PLM решениям, однако системы автоматизированного проектирования являются их неотъемлемой частью.

Onshape—Modernize your product design process

The industry’s first pure Software-as-a-Service (SaaS) product development platform that unites robust computer-aided design with powerful data management, collaboration tools, and real-time analytics. The cloud-native solution is a perfect fit for companies requiring the flexibility of remote design teams, enabling engineers to work together from anywhere, any time, and on any device.

Quickly deploy on any computer or mobile device to enable your teams with:

  • real-time design views and collaborative workflows for interactive design reviews and concurrent design edits
  • built-in version control and data management to eliminate the need for separate PDM systems
  • in-sync bill of materials (BOM) tables with editing assemblies
  • a robust REST API for improved integrations across your systems
  • increased security from role-based access, AES-256 encryption, and more

Продуктивность, надежность и стильИ что в результате?

Подытожим все вышесказанное.

Бесплатным бывает только сыр в мышеловке. Какой бы недорогой ни показалась вам на первый взгляд та или иная САПР, со временем результат может оказаться прямо противоположным ожидаемому.

САПР нужно выбирать, заглядывая в будущее и не забывая о прошлом. Вне зависимости от возраста САПР должна обеспечить беспроблемный доступ к данным. Берегитесь САПР, в которой доступ к данным невозможно получить без специальных программ (вьюверов и т.д.). Купив такую систему, вы окажетесь «на крючке». Если спустя некоторое время вам больше не захочется использовать имеющуюся программу, вы все равно будете зависеть от нее или от ее версии, поскольку уже создадите в ней определенное количество наработок, пригодных для использования в будущем.

Не забывайте, что только один формат является стандартом: формат AutoCAD DWG (DXF). Я все хвастаюсь способностью читать и сохранять в DWG, но факты таковы, что только для AutoCAD это родной формат…

Знания о базовых САПР должны быть легкодоступными

Это очень и очень важно! Например, зайдя в книжный магазин, вы наверняка увидите книги о Microsoft Office, AutoCAD, 3D Studio. Открыв рекламную газету, непременно найдете приглашения на курсы изучения этих же программ

На мой взгляд, это означает, что этим базовым программным продуктам можно доверять! Это означает, что вы можете повышать квалификацию, учиться самостоятельно и получать дополнительную информацию. Эти программы прошли испытание временем.

Если говорить об узкоспециализированных решениях, то здесь обучение лучше покупать вместе с программой. Увы, следуют этому правилу не всегда. Как результат — масса приличного по стоимости ПО, используемого не по назначению или не используемого вовсе! Знакомиться с САПР лучше в учебных или системных центрах дистрибьюторских компаний. Такие компании имеют прямой доступ к программам, которым обучают, располагают финансами, необходимыми для привлечения лучших преподавателей, и следуют оптимальным методикам. Подход, выгодный и продавцам, и клиентам.

САПР как хорошее вино — с годами приобретает более благородные черты. Таким образом, выбирая САПР «по карману», не забывайте о развитии по специальностям.

Посмотрите на «открытость» САПР. Если придется разрабатывать что-то специальное под уникальную и неповторимую задачу, главное, чтобы фирмы и компании — разработчики ПО смогли самостоятельно написать заказанные вами приложения. Кстати в этой области у AutoCAD нет конкурентов: официальная поддержка Microsoft Visual C++, Autodesk AutoLISP, Microsoft VBA (Basic), возможна поддержка Delphi, Borland C и других.

Все это лишь подтверждает правильность моего выбора. Скоро 10 лет, как я начертил в AutoCAD свою первую линию. Само собой, за эти годы довелось познакомиться со многими другими пакетами. Но ни один из них — что отечественный, что зарубежный — не приносил такой отдачи.

Да простят меня знатоки Экзюпери, но в завершение позволю себе переиначить применительно к AutoCAD последние строчки романа «Цитадель»:

AutoCAD — общая для нас мера. Это узел, что связал воедино решение бесчисленного множества несхожих задач.

Заключение

  • Классическое проектирование, нацеленное на выпуск документации (чертежей): надежный, быстрый, удобный, простой и, самое главное, универсальный продукт.
  • Классический и удобный интерфейс, обеспечивающий простой переход и быстрое начало работы для пользователей, простоту поддержки и интеграцию в существующие бизнес-процессы для САПР-менеджеров и экономию для руководителей проектных организаций за счет большого количества уже готовых специалистов и несложного внедрения.
  • Полный набор функций для проектирования: от классических двумерных инструментов до современных технологий, привязанных к предметным областям.
  • Настройка под российские стандарты проектирования: масштабы, элементы оформления, термины – все это уже преднастроено в базовой САПР-платформе и расширяется в специализированных решениях под применение на российском проектном рынке.
  • Масштабируемость и специализация: несмотря на то что изначально nanoCAD является продуктом с минимальным уровнем автоматизации, он расширяется и умеет автоматизировать сложные специализированные задачи (расчеты, автоматическое черчение, интеграция и т.д.) – смотрите дополнительные приложения под платформу nanoCAD Plus от «Нанософт» и других разработчиков. А если вы разработчик, у вас есть идеи по развитию какого-либо нового решения и вам нужна хорошая качественная графическая платформа с поддержкой формата DWG, то добро пожаловать в мир разработки под nanoCAD Plus.
  • Развитие: наш продукт развивается вслед за запросами российских пользователей. Вас не устраивает, что зарубежные решения поставляются в режиме «как есть»? Теперь существует альтернатива, которая учитывает задачи такой большой страны, как Россия.

авторизованному партнеруwww.nanocad.ruwww.nanocad.rudeveloper.nanocad.ru

Денис Ожигин,
технический директор
АО «Нанософт»

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации