Андрей Смирнов
Время чтения: ~18 мин.
Просмотров: 3

Расчет трансформатора: онлайн калькулятор или дедовский метод для дома

Какие ферриты можно применить и почему?

Как известно, сердечник в трансформаторе выполняет функции концентратора электромагнитной энергии. Чем выше допустимая
индукция B
и магнитная проницаемость μ , тем больше плотность передаваемой энергии и компактнее трансформатор.
Наибольшей магнитной проницаемостью обладают т.н. ферромагнетики — различные соединения железа, никеля и некоторых других металлов.

Магнитное поле описывают две величины: напряженность Н (пропорциональна току обмотки) и магнитная индукция В (характеризует силовое действие поля в материале). Связь В и H называют кривой намагничивания вещества. У ферромагнетиков она имеет интересную особенность — гистерезис (греч. отстающий) — когда мгновенный отклик на воздействие зависит от его предыстории.

После выхода из нулевой точки (этот участок называют основной кривой намагничивания) поля начинают бегать по некой замкнутой кривой (называемой петлей гистрезиса). На кривой отмечают характерные точки — индукцию насыщения B s , остаточную индукцию B r и
коэрцитивную силу Н с.

Рис.1. Магнитные свойства ферритов. Слева форма петли гистерезиса и ее параметры. Справа основная кривая намагничивания феррита 1500НМ3 при различных температурах и частотах: 1 — 20кГц, 2 — 50кГц, 3 — 100 кГц.

По значениям этих величин ферромагнетики условно делят на жесткие и мягкие. Первые имеют широкую, почти прямоугольную петлю гистерезиса и хороши для постоянных магнитов. А материалы с узкой петлей используют в трансформаторах. Дело в том, что в сердечнике трансформатора есть два вида потерь — электрические, и магнитные. Электрические (на возбуждение вихревых токов Фуко)
пропорциональны проводимости материала и частоте, а вот магнитные тем меньше, чем меньше площадь петли гистерезиса.

Ферриты это пресс порошки окисей железа или других ферромагнетиков спеченные с керамическим связующим.
Такая смесь сочетает два противоположных свойства — высокую магнитную проницаемость железа и плохую проводимость окислов. Это минимизирует как электрические, так и магнитные потери и позволяет делать трансформаторы, работающие на высоких частотах.
Частотные свойства ферритов характеризует критическая частота f c , при которой тангенс потерь достигает 0,1.
Тепловые — температура Кюри Т с, при которой μ скачком уменьшается до 1.

Отечественные ферриты маркируются цифрами, указывающими начальную магнитную проницаемость, и буквами, обозначающими диапазон частот и вид материала.
Наиболее распространен низкочастотный никель-цинковый феррит, обозначаемый буквами НН. Имеет низкую проводимость и сравнительно высокую частоту f c . Но у него большие магнитные потери и невысокая температура Кюри.
Никель-марганцевый феррит имеет обозначение НМ. Проводимость его больше, поэтому f c низкая. Зато малы магнитные потери,
температура Кюри выше, он меньше боится механических ударов.
Иногда в маркировке ферритов ставят дополнительную цифру 1, 2 или 3. Обычно, чем она выше, тем более температурно стабилен феррит.

Какие марки ферритов нам наиболее интересны?

Для преобразовательной техники хорош термостабильный феррит 1500НМ3 с fc=1,5 МГц, Bs=0,35..0,4 Тл и Tc=200 ℃.

Для спец применений выпускают феррит 2000НМ3 с нормируемой дезакаммодацией (временной стабильностью магнитной проницаемости). У него fc=0,5 МГц, Bs=0,35..0,4 Тл и Tc=200 ℃.

Для мощных и компактных трансформаторов разработаны ферриты серии НМС. Например 2500НМС1 с Bs=0,45 Тл и 2500НМС2 c Bs=0,47 Тл. Их критическая частота fc=0,4 МГц, а температура Кюри Tc>200 ℃.

Что касается допустимой индукции B m , этот параметр подгоночный и в литературе не нормируется. Ориентировочно можно считать
B m = 0,75 В s min
. Для никель-марганцевых ферритов это дает примерно 0,25 Тл. С учетом падения B s при повышенных температурах и за счет старения в ответственных случаях лучше подстраховаться и снизить B m до 0,2 Тл.

Основные параметры распространенных ферритов сведены в Таблицу 3.

Таблица 3. Основные параметры некоторых ферритов

Марка

100НН

400НН

600НН

1000НН

2000НН

2000НМ

1000НМ3

1500НМ1

1500НМ3

μ нач

80..120

350..500

500..800

800..1200

1800..2400

1700..2500

800..1200

1200..1800

1200..1800

fc, МГц

7

3,5

1,5

0,4

0,1

0,5

1,8

0,7

1,5

Tc, ℃

120

110

110

110

70

200

200

200

200

Bs, Тл

0,44

0,25

0,31

0,27

0,25

0,38..0,4

0,33

0,35..0,4

0,35..0,4

Как рассчитать диаметр провода для любой обмотки?

Чем толще, тем лучше, но с условием, что он поместится в окно магнитопровода. Если окно небольшое, то желательно посчитать ток каждой наматываемой обмотки, чтобы подобрать оптимальный диаметр провода из имеющихся в наличии.

Рассчитать ток катушки можно по формуле:

I = P / U

I – ток обмотки,

P – мощность потребляемая от данной обмотки,

U – действующее напряжение данной обмотки.

Например, у меня потребляемая мощность 31 Ватт и вся она будет отдаваться катушками «III» и «IV».

31 / (12,8+12,8) = 1,2 Ампер

Диаметр провода можно вычислить по формуле:

D = 1,13 √(I / j)

D – диаметр провода в мм,

I – ток обмотки в Амперах,

j – плотность тока в Ампер/мм².

При этом плотность тока можно выбрать по таблице.

Конструкция трансформатора Плотность тока (а/мм2) при мощности трансформатора (Вт)
5-10 10-50 50-150 150-300 300-1000
Однокаркасная 3,0-4,0 2,5-3,0 2,0-2,5 1,7-2,0 1,4-1,7
Двухкаркасная 3,5-4,0 2,7-3,5 2,4-2,7 2,0-2,5 1,7-2,3
Кольцевая 4,5-5,0 4,0-4,5 3,5-4,5 3,0-3,5 2,5-3,0

Пример:

Ток, протекающий через катушки «III» и «IV» – 1,2 Ампера.

А плотность тока я выбрал – 2,5 А/ мм².

1,13√ (1,2 / 2,5) = 0,78 мм

У меня нет провода диаметром 0,78 мм, но зато есть провод диаметром 1,0мм. Поэтому, я на всякий случай посчитаю, хватит ли мне места для этих катушек.

На картинке два варианта конструкции каркаса: А – обычная, В– секционная.

  1. Количество витков в одном слое.
  2. Количество слоёв.

Ширина моего несекционированного каркаса 40мм.

Мне нужно намотать 124 витка проводом 1,0 мм, у которого диаметр с изоляцией равен 1,08 мм. Таких обмоток требуется две.

124 * 1,08 * 1,1 : 40 ≈ 3,68 слоя

1,1 – коэффициент. На практике, при расчёте заполнения нужно прибавить 10 – 20% к полученному результату. Я буду мотать аккуратно, виток к витку, поэтому добавил 10%.

Получилось 4 слоя провода диаметром 1,08мм. Хотя, последний, четвёртый слой заполнен только на несколько процентов.

Определяем толщину обмотки:

1,08 * 4 ≈ 4,5 мм

У меня в распоряжении 9мм глубины каркаса, а значит, обмотка влезет и ещё останется свободное место.

Ток катушки «II» вряд ли будет больше чем – 100мА.

1,13√ (0,1 / 2,5) = 0,23 мм

Диметр провода катушки «II» – 0,23мм.

Это малюсенькая по заполнению окна обмоточка и её можно даже не принимать в расчёт, когда остаётся так много свободного места.

Конечно, на практике у радиолюбителя выбор проводов невелик. Если нет провода подходящего сечения, то можно намотать обмотку сразу несколькими проводами меньшего диаметра. Только, чтобы не возникло перетоков, мотать нужно одновременно двумя, тремя или даже четырьмя проводами. Перетоки, возникают тогда, когда есть даже незначительные отклонения в длине обмоток соединённых параллельно. При этом, из-за разности напряжений, возникает ток, который греет обмотки и создаёт лишние потери.

Перед намоткой в несколько проводов, сначала нужно посчитать длину провода обмотки, а затем разрезать провод на требуемые куски.

Длина проводов будет равна:

L = p * ω * 1,2

L – длина провода,

p – периметр каркаса в середине намотки,

ω – количество витков,

1,2* – коэффициент.

* Укладывать обмотку при намотке в несколько проводов сложно и утомительно, поэтому лучше перестраховаться и использовать этот коэффициент, компенсирующий ошибки расчёта и неаккуратной укладки.

Толстый провод необходимо мотать виток к витку, а более тонкие провода можно намотать и в навал. Главное, чтобы обмотка поместилась в окно магнитопровода.

Если намотка производится аккуратно без повреждения изоляции, то никаких прокладок между слоями можно не применять, так как, при постройке УНЧ средней мощности, большие напряжения не используются. Изоляция же обмоточного провода рассчитана на напряжение в сотни вольт. Чем толще провод, тем выше пробивное напряжение изоляции провода. У тонкого провода пробивное напряжение изоляции около 400 Вольт, а у толстого может достигать 2000 Вольт.

Закрепить конец провода можно обычными нитками.

Если при удалении вторичной обмотки повредилась межобмоточная изоляция, защищающая первичную обмотку, то её нужно обязательно восстановить. Тут можно применить плотную бумагу или тонкий картон. Не рекомендуется использовать всякие синтетические материалы вроде скотча, изоленты и им подобные.

Если катушка разделена на секции для первичных и вторичных обмоток, то тогда и вовсе можно обойтись без изоляционных прокладок.

Расчёт тороидального трансформатора — Fotoatelier Александр Горбатов

РАСЧЕТ ТОРОИДАЛЬНЫХ ТРАНСФОРМАТОРОВ

Перед конструкторами радиоэлектронной аппаратуры часто ставится задача создания таких устройств, которые отличались бы небольшими размерами и минимальным весом.

Практика показала, что лучше всего применять трансформаторы с тороидальным магнитопроводом. В сравнении с броневыми сердечниками из Ш-образных пластин они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмотки и повышенным к.п.д. Кроме того, при равномерном распределении обмоток по периметру сердечника практически отсутствует поле рассеяния и в большинстве случаев отпадает необходимость в экранировании трансформаторов,

В связи с тем, что полный расчет силовых трансформаторов на тороидальных сердечниках слишком громоздок и сложен, приводим таблицу, с помощью которой радиолюбителю будет легче произвести расчет тороидального трансформатора мощностью до 120 вт.  Точность расчета вполне достаточна для любительских целей.* Расчет параметров тороидального трансформатора, не вошедших в таблицу, аналогичен расчету трансформаторов на Ш-образном сердечнике.

Таблицей можно пользоваться при расчете трансформаторов на сердечниках из холоднокатаной стали Э310, Э320, Э380 с толщиной ленты 0,35—0, 5 мм. и стали Э340, Э350, Э360 с толщиной ленты 0*05—0,1 мм. при частоте питающей сети 50 Гц.

При намотке трансформаторов допустимо применять лишь межобмоточную и наружную изоляции: хотя межслоевая изоляция и позволяет добиться более ровной укладки провода обмоток, из-за различия наружного и внутреннего диаметров сердечника при ее применении неизбежно увеличивается толщина намотки по внутреннему диаметру.

Для намотки тороидальных трансформаторов необходимо применять обмоточные провода с повышенной механической и электрической прочностью изоляции. При намотке вручную следует пользоваться проводами ПЭЛШО, ПЭШО. В крайнем случае можно применить провод ПЭВ-2. В качестве межобмоточной и внешней изоляции пригодны фторопластовая пленка ПЭТФ толщиной 0,01— 0,02 мм. лакоткань ЛШСС толщиной 0,06—0,12 мм. или батистовая лента.

Пример расчета трансформатора:

Дано: напряжение питающей сети                                 Uc = 220 в,

выходное напряжение                                                      Uн = 24 в,

ток нагрузки                                                                       Iн = 1,8 а.

1. Определяют мощность вторичной обмотки

                                                                             P = Uн*Iн =  24*1,8 = 43,2 вт.

2. определяют габаритную мощность трансформатора

                                                                             Pг = p/η = 43,2 / 0,92 = 48 вт.

Величину к. п. д. и другие необходимые для расчета данные выбирают по таблице из нужной графы ряда габаритных мощностей.

3. Находят площадь сечения сердечника

                                                                          Sрасч.= √(Pг / 1,2) = 5,8 см2. 

Pг Вт.  W1  W2  Sсм2  Δ А/мм2 η 
до 10  41/S 38/S √Pг 4,5 0,8
10-30  36/S 32/S  √Pг/1,1 4,0 0,9
30-50  33,3/S 29/S  √Pг/1,2  3,5 0,92 
50-120  32/S 28/S  √Pг/1,25  3,0 0,95 

Примечание. Рг, — габаритная мощность трансформатора, w1, — число витков на вольт для стали Э310, Э320, Э330,  w2— число витков на вольт для стали Э340, Э359, ЭЗ60, S — площадь сечения сердечника см2, Δ — допустимая плотность тока в обмотках, η — к. п. д. трансформатора.

4. Подбирают размеры сердечника Dc, dc и hc

                                                                                  S = ((Dc —  dc) / 2) * hc

Ближайший стандартный тип сердечника — ОЛ 50/80-40, площадь сечения которого равна 6 см2 (не менее расчетной).

5. При определении внутреннего диаметра сердечника должно быть выполнено условие: dc ≥ d`c,то есть 5 ≥3,8.

6. Предположим, что выбран сердечник из стали Э320, тогда число витков на вольт определяют по формуле;

                                                            w1 = 33,3 / S = 33,3 / 6 = 5,55 витков / вольт.

7. Находят расчетные числа витков первичной и вторичной обмоток W1-1 =w1* Uc = 5,55 * 220 = 1221 виток.  W1-2= w2 * Uc = 5,55*24 = 133 витка.

Так как в тороидальных трансформаторах магнитный поток рассеяния весьма мал, то падение напряжения в обмотках определяется практически лишь их активным сопротивлением, вследствие чего относительная величина падения напряжения в обмотках тороидального трансформатора значительно меньше* чем в трансформаторах стержневого и броневого типов. Поэтому для компенсации потерь на сопротивлении вторичной обметки необходимо увеличить количество ее витков лишь на 3%.

                                                                           W1-2 = 133 * 1,03 = 137 витков.

8. Определяют диаметры проводов обмоток d1 = 1,13 * √(I1 / Δ) , где I1 ток первичной обмотки трансформатора, определяемый иэ формулы:

                                                                       I1  = 1,1 * (Рг / Uc) = 1,1 * (48 / 220) = 0,24 а

                                                                          d1 =1,13 * √(0,24 / 3,5)  = 0,299 мм.

Выбирают ближайший диаметр провода в сторону увеличения (0*31 мм)

                                                               d2 = 1,13 * √(I2 / Δ) = 1,13 * √(1,8 / 3,5) = 0,8 мм.

Трансформаторы, рассчитанные с помощью приводимой таблицы, после изготовления подвергались испытаниям под постоянной максимальной нагрузкой в течение нескольких часов и показали хорошие результаты .

Инж. Г. МАРТЫНИХИН

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60
ватт

Где:Р_2
– мощность на выходе трансформатора, нами задана 60 ватт
;

U
_2
— напряжение на выходе трансформатора, нами задано 36 вольт
;

I
_2
— ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт
обычно равно не более η = 0,8
.КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт
.

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения
Р_1

, мощности потребляемой от сети 220
вольт,
зависит площадь поперечного сечения магнитопровода S
.

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 · √P_1.

Где:S
— площадь в квадратных сантиметрах,
P
_1 — мощность первичной сети в ваттах.

S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².

По значению S
определяется число витков w
на один вольт по формуле:

w = 50/S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50/10,4 = 4,8
витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 = 172.8 витков
,

округляем до 173 витка
.

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера
.

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока,
для медного провода,

принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I
.

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм
.

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА,
то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².

где
: d — диаметр провода
.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1
мм.

Площадь поперечного сечения провода диаметром 1,1
мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм²
.

Округлим до 1,0
мм².

Из
таблицы
выбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм
. и площадью по0,5 мм²
.

Или два провода: — первый диаметром 1,0 мм
. и площадью сечения 0,79 мм²
,
— второй диаметром 0,5 мм
. и площадью сечения 0,196 мм²
.что в сумме дает: 0,79 + 0,196 = 0,986 мм².

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

Получается как бы один провод с суммарным поперечным сечением двух проводов.

Смотрите статьи:
— «Как намотать трансформатор на Ш-образном сердечнике».
— «Как изготовить каркас для Ш — образного сердечника».

Электрический аппарат — трансформатор используется для преобразования поступающего переменного напряжения в другое — исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.

Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.

Расчет импульсного трансформатора тороидального типа

Они отличаются меньшими весом и размерами, чем аналогичные устройства, например, трансформатора с сердечником броневого типа. Для тороидальных трансформаторов характерно лучшее охлаждение и высокий КПД. Периметр сердечника позволяет распределить проводник обмотки более равномерно, что способствует уменьшению влияния  поля рассеяния, благодаря этому отпадает необходимость создания экранирования импульсного трансформатора.

Для расчета тороидального импульсного трансформатора с целью ускорить процесс и исключить случайную ошибку используют специально разработанную таблицу. Она, кстати, явилась прототипом автоматической программной версии расчета. Использование табличного расчета позволяет ускорить процесс и дает представление обо всех происходящих в работе импульсного трансформатора процессах. Расчет аналогичен расчету ИТ с броневым и бронестержневым Ш-образным сердечником.

Рис. №1. Таблица основных расчетов тороидальных импульсных трансформаторов,

Где:

  • Рr — габаритная мощность;
  • w1 – число витков на вольт для сердечника из сталей марки Э310, Э320;
  • w2 – число витков на 1 вольт на стальной сердечник марки Э340; Э350; Э360;
  • S – площадь поперечного сечения провода;
  • Δ – разрешенная плотность тока в катушке;
  • η – КПД тр-ра.

Первое действие проектирования импульсного трансформатора – выбор материала. Для большинства импульсных трансформаторов используется холоднокатаное стальное железо: Э310; Э320; Э380 с лентой толщиной до 0,5 мм. Если толщина ленты до 0,1 мм выбирается сталь Э340; Э350; Э360

Для намотки трансформаторов допускается использовать изоляцию снаружи и между обмоток. Изоляция, расположенная между слоями позволяет сделать укладку проводника ровным слоем, повышает толщину намотки в диаметре внутри сердечника.

Рис. №2.Форма конструкции сердечника тороидального импульсного трансформатора А – Магнитопроводный сердечник; С – Проводник для индуктивной связи.

Проводник должен быть выбран с высокой степенью прочности изоляции к механическим и электрическим воздействиям марок (ПЭЛШО; ПЭШО или провод ПЭВ-2). Для изоляции выбирается лакоткань, фторопластовая пленка (ПЭТФ) и батистовая лента.

Расчет импульсного трансформатора
Исходные параметры, необходимые для выполнения расчетов импульсных трансформаторов: Р2 (Вт) – импульсная мощность; U1 (В) – импульсное напряжение; Rи (Ом) – сопротивление источника; tи  (с) – время продолжительности импульса; fn (Гц) – частота движения импульсов; λ = 0,04 коэффициент искажения верхней, прямой части прямоугольного импульса

Пример расчета трансформатора

Если известно напряжение питания Uc = 220B; напряжение выхода Uв = 24В; Iн = 1,8А

действием определяем мощность «вторички»:
Р = Uв * Iн = 24 * 1,8 = 43,2 Вт

действие. Высчитывает габаритную мощность тр-ов:
Рг = Р/ η 43,2 / 0,92 = 48Вт; показатель КПД выбираем из табличного значения в ряду габаритных значений мощностей.

Рассчитываем   г /1,2 = 1,2 = 5,8см2
Выбираем габариты сердечника Dc; dc; hс
S = Dc – dc /2 * hс

Наиболее вероятный, приближенный тип сердечника – ОЛ50/80 – 40; площадь его сечения равна (8 – 5)/ 2 * 4 = 6 см2 (около расчетной)

Находим внутренний диаметр сердечника, здесь справедливо утверждение dc  ≥ d/с
d/с =  =  = 3,8 см, что означает 5  3,8,

Предположительно выбираем сердечник стали Э320, количество витков определяем, как:
w1 = 33.3/S = 33.3/6 = 5.55 витков на 1 вольт

Находим допустимое число витков «первички» и «вторички»:
W1-1 = w1 * Uс – 5.55 * 220 = 1221 виток; W1-2 = w1 * Uн = 5,55 * 24 = 133 витка.

Ввиду того, что в трансформаторах с тороидальным сердечником наблюдается малый магнитный поток рассеяния, падение напряжения в обмотках определяется с помощью активного сопротивления. Значение падения напряжения в катушках трансформатора тороидального типа  намного меньше, чем этот параметр для бронестержневых трансформаторов. Для того, чтобы компенсировать потери во вторичной обмотке увеличивают число витков на 3%.

W1-2 = 133 * 1,03 = 137 витков

Находим диаметр провода для обмотки
d1 = 1.33 , I1 – ток в «первичке» трансформатора, определяется по формуле: I1 = 1,1 (Pг/Uc) = 1,1 * 48/220 = 0,24а

d1 = 1,33  = 0,299мм

находим подходящий диаметр проводника, берем в сторону увеличения (0,31мм);

d2 – 1,33  = 1,19  = 0,8 мм.

Как рассчитать мощность трансформатора

Чаще всего необходимость расчета мощности трансформатора возникает при работе со сварочной аппаратурой, особенно когда технические характеристики заранее неизвестны.

Мощность трансформатора тесно связана с силой тока и напряжением, при которых аппаратура будет нормально функционировать. Самым простым вариантом будет умножение значения напряжения на величину силы тока, потребляемого устройством. Однако на практике не все так просто, прежде всего из-за различия в типах устройств и применяемых в них сердечников. В качестве примера рекомендуется рассматривать Ш-образные сердечники, получившие наиболее широкое распространение, благодаря своей доступности и сравнительно невысокой стоимости.

Для расчета мощности трансформатора понадобятся параметры его обмотки. Эти вычисления проводятся по такой же методике, которая рассматривалась ранее. Наиболее простым вариантом считается практическое измерение обмотки трансформатора. Показания нужно снимать аккуратно и максимально точно. После получения всех необходимых данных можно приступать к расчету мощности.

Ранее, для определения площади сердечника применялась формула: S=1,3*√Pтр. Теперь же, зная площадь сечения магнитопровода, эту формулу можно преобразовать в другой вариант: Р тр = (S/1,3)/2. В обеих формулах число 1,3 является коэффициентом с усредненным значением.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации