Андрей Смирнов
Время чтения: ~13 мин.
Просмотров: 0

Площадь круга: как найти, формулы

Формула вычисления площади круга

Давайте разберем несколько формул расчета площади круга. Поехали!

Площадь круга через радиус

S = π * r2, где r — это радиус, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Площадь круга через длину окружности

S = L2​ : 4 * π, где L — это длина окружности.

Важно!
задачку не решить, если длина и ширина переданы в разных единицах длины. Для правильного решения переведите все данные к одной единице измерения, и все получится.. Популярные единицы измерения

Популярные единицы измерения

  • квадратный миллиметр (мм2);
  • квадратный сантиметр (см2);
  • квадратный дециметр (дм2);
  • квадратный метр (м2);
  • квадратный километр (км2);
  • гектар (га).

Доказательство перегруппировкой

Площадь круга после перегруппировки

Анимация перегруппировки

Следуя Сато Мошуну и Леонардо да Винчи , мы можем использовать вписанные правильные многоугольники другим способом. Положим, мы вписали шестиугольник. Разрежем шестиугольник на шесть треугольников, делая сечения через центр. Два противоположных треугольника содержат общие диаметры. Сдвинем теперь треугольники, чтобы радиальные стороны стали смежными. Теперь пара треугольников образует параллелограмм, в котором стороны шестиугольника образуют две противоположные стороны длиной s. Две радиальные стороны становятся боковыми сторонами, а высота параллелограмма равна h (как в доказательстве Архимеда). Фактически, мы можем собрать все треугольники в один большой параллелограмм, располагая в ряд полученные параллелограммы (из двух треугольников). То же самое будет верно, если мы будем увеличивать число сторон. Для многоугольника с 2n сторонами параллелограмм будет иметь основание ns и высоту h. С ростом числа сторон длина основания параллелограмма увеличивается, стремясь к половине окружности, а высота стремится к радиусу. В пределе параллелограмм становится прямоугольником с шириной πr и высотой r.

Приближения площади круга единичного радиуса перегруппировкой треугольников.
многоугольникпараллелограмм
n   сторона       основание  высота  площадь
41,41421362,82842710,70710682,0000000
61,00000003,00000000,86602542,5980762
80,76536693,06146750,92387952,8284271
100,61803403,09016990,95105652,9389263
120,51763813,10582850,96592583,0000000
140,44504193,11529310,97492793,0371862
160,39018063,12144520,98078533,0614675
960,06543823,14103200,99946463,1393502
1/∞π1π

История

Современные математики могут получить площадь круга с помощью методов интегрирования или вещественного анализа. Однако площадь круга изучалась ещё в Древней Греции. Евдокс Книдский в пятом столетии до нашей эры обнаружил, что площади кругов пропорциональны квадратам их радиусов. Великий математик Архимед использовал методы евклидовой геометрии, чтобы показать, что площадь внутри окружности равна площади прямоугольного треугольника, основание которого имеет длину окружности, а высота равна радиусу окружности, в своей книге . Длина окружности равна 2πr, а площадь треугольника равна половине основания на высоту, что даёт πr2. До Архимеда Гиппократ Хиосский первый показал, что площадь круга пропорциональна квадрату его диаметра в его попытках квадрирования гиппократовых луночек Однако он не установил константу пропорциональности.

Доказательство Архимеда

Следуя Архимеду, сравним площадь круга с площадью прямоугольного треугольника, основание которого равно длине окружности, а высота равна радиусу. Если площадь круга не равна площади треугольника, она должна быть меньше или больше. Исключим оба варианта, что оставит только одну возможность — площади равны. Для доказательства будем использовать правильные многоугольники.

Не больше

Круг с вписанными квадратом и восьмиугольником. Показан зазор

Предположим, что площадь круга C больше площади треугольника T = 1⁄2cr. Пусть E означает превышение площади. квадрат в окружность, чтобы все его четыре угла лежали на окружности. Между квадратом и окружностью четыре сегмента. Если общая их площадь G4 больше E, делим каждую дугу пополам, что превращает вписанный квадрат в восьмиугольник и образует восемь сегментов с меньшим общим зазором, G8. Продолжаем деление, пока общий зазор Gn не станет меньше E. Теперь площадь вписанного многоугольника Pn = C − Gn должна быть больше площади треугольника.

E=C−T>GnPn=C−Gn>C−EPn>T{\displaystyle {\begin{aligned}E&{}=C-T\\&{}>G_{n}\\P_{n}&{}=C-G_{n}\\&{}>C-E\\P_{n}&{}>T\end{aligned}}}

Но это ведёт к противоречию. Для доказательства проведём высоту из центра окружности на середину стороны многоугольника, её длина h меньше радиуса окружности. Пусть каждая сторона многоугольника имеет длину s, сумма всех сторон составит ns, и эта величина меньше длины окружности. Площадь многоугольника состоит из n равных треугольников высоты h с основанием s, что даёт 1⁄2nhs. Но h < r и ns < c, так что площадь многоугольника должна быть меньше площади треугольника 1⁄2cr, получили противоречие.

Не меньше

Окружность с описанным квадратом и восьмиугольником. Показан зазор

Предположим, что площадь круга меньше площади треугольника. Пусть D означает разницу площадей. Описываем квадрат вокруг окружности, так что середины сторон лежат на ней. Если суммарный зазор между квадратом и окружностью G4 больше D, срезаем углы касательными, превращая квадрат в восьмиугольник и продолжаем такие отсечения пока площадь зазора не станет меньше D. Площадь многоугольника Pn должна быть меньше T.

D=T−C>GnPn=C+Gn<C+DPn<T{\displaystyle {\begin{aligned}D&{}=T-C\\&{}>G_{n}\\P_{n}&{}=C+G_{n}\\&{}<C+D\\P_{n}&{}<T\end{aligned}}}

Это тоже приводит к противоречию. Каждый перпендикуляр, проведённый от центра круга к середине стороны, является радиусом, т.е. имеет длину r. А поскольку сумма сторон больше длины окружности, многоугольник из n одинаковых треугольников даст площадь, большую T. Снова получили противоречие.

Таким образом, площадь круга в точности равна площади треугольника.

Аппроксимация случайными бросаниями

Площадь единичного круга методами Монте-Карло. После 900 бросаний получаем 4×709⁄900 = 3,15111…

Если более эффективные методы недоступны, можно прибегнуть к «бросанию дротиков». Этот метод Монте-Карло использует факт, что при случайных бросаниях точки равномерно по площади квадрата, в котором расположен круг, число попаданий в круг приближается к отношению площади круга на площадь квадрата. Следует принимать этот метод как последнюю возможность вычисления площади круга (или фигуры любой формы), поскольку для получения приемлемой точности требует огромного числа испытаний. Для получения точности 10−n необходимо около 100n случайных испытаний .

Коэффициенты некоторых местных сопротивлений z.

Табл. 6

Вид местного сопротивления

Схема

Коэффициент местного сопротивления z

Внезапное расширение

(1 – S1/S2)2, S1 = πd2/4, S2 = πD2/4.

Выход из трубы в резервуар больших размеров

1

Постепенное расширение (диффузор)

  1. Если a<8.

0.15 – 0.2 ((1 – (S1/S2)2)

  1. Если 80.

sin α (1 – S1/S2)2

  1. Если a>30

(1 – S1/S2)2

Вход в трубу:

С острыми краями

0.5

С закругленными краями

0.2-0.1 (в зависимости от радиуса закругления)

С выступающими острыми краями

1

В виде конического патрубка

0.15

Внезапное сужение:

ζ/ɛп + (1/ ɛп – 1)2. z=0.005-0б06

eп= 0.62-0.63 (вход с острыми краями)

eп=0.7-0.99 (вход с закругленными краями.

По данным ЦАГИ коэффициент местного сопротивления при внезапном сужении определяется зависимостью:

0.5 (1- S1/S2)

1 — S1/S2

Поворот струи

Закругление

0.14-0.3  (d/r =0.4-1 при j=90)

z×j/90 (при j¹90)

Прямое колено

1-1.5

Постепенное сужение (конфузор)

0.005-0.06 (a<5)

0.16-0.24 (7 < <30)

Вентили и задвижки (при полном открытии)

Обыкновенный проходной вентиль

3-5.5

Задвижка

0.12

Диафрагма

(1 + 0.707/(1- S1/S2))2*( S1/S2 – 1)2

Коэффициент сопротивления диафрагмы можно также определить в зависимости от отношения площади поперечного сечения трубы Sк площади отверстия диафрагмы S1.

Аппроксимация случайными бросаниями

Площадь единичного круга методами Монте-Карло. После 900 бросаний получаем 4×709⁄900 = 3,15111…

Если более эффективные методы недоступны, можно прибегнуть к «бросанию дротиков». Этот метод Монте-Карло использует факт, что при случайных бросаниях точки равномерно распространяются по площади квадрата, в котором расположен круг, число попаданий в круг приближается к отношению площади круга на площадь квадрата. Следует принимать этот метод как последнюю возможность вычисления площади круга (или фигуры любой формы), поскольку для получения приемлемой точности требует огромного числа испытаний. Для получения точности 10−n необходимо около 100n случайных испытаний .

Обобщения

Мы можем растянуть круг до формы эллипса. Поскольку это растяжение является линейным преобразованием плокости, оно изменяет площадь, но сохраняет отношения площадей. Этот факт можно использовать для вычисления площади произвольного эллипса, отталкиваясь от площади круга.

Пусть единичный эллипс описан квадратом со стороной 2. Преобразование переводит круг в эллипс путём сжатия или растяжения горизонтального и вертикального диаметров до малой и большой оси эллипса. Квадрат становится прямоугольником, описанным вокруг эллипса. Отношение площади круга к площади квадрата равно π/4, и отношение площади эллипса к площади прямоугольника будет тоже π/4. Если a и b — длины малой и большой осей эллипса. Площадь прямоугольника будет равна ab, а тогда площадь эллипса — πab/4.

Мы можем распространить аналогичные техники и на большие размерности. Например, если мы хотим вычислить объём внутри сферы, и мы знаем формулу для площади сферы, мы можем использовать приём, аналогичный «луковичному» подходу для круга.

Задачи. Определить площадь круга

Мы разобрали три формулы для вычисления площади круга. А теперь тренироваться — поехали!

Задание 1. Как найти площадь круга по диаметру, если значение радиуса равно 6 см.

Как решаем:

  1. Диаметр окружности равен двум радиусам.
  2. Используем формулу: S = d2 : 4 * π.
  3. Подставим известные значения: S = 122 : 4 * 3,14.

S = 113,04 см2.

Задание 2. Найти площадь круга, если известен диаметр равный 90 мм.

Как решаем:

  1. Используем формулу: S = d2 : 4 * π.
  2. Подставим известные значения: S = 902 : 4 * 3,14.

S = 6358,5 мм2.

Задание 3. Найти длину окружности при радиусе 3 см.

Как решаем:

  1. Отношение длины окружности к диаметру является постоянным числом.

π = L : d

  1. Получается: L = d * π.
  2. Формула площади окружности: L = 2 * π * r.
  3. Подставим значение радиуса: L = 2 * 3,14 * 3.

L = 18,84 см2

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики в детскую школу Skysmart. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом. А еще помогут догнать сверстников и справиться со сложной контрольной.

Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем.

Задачи для решения

Давайте тренироваться! Двигаемся от простого к сложному:

Задача 1. Найти длину окружности, диаметр которой равен 5 см.

Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:

l=πd

Подставляем туда известные переменные и получается, что длина окружности равна

l=πd=3,14·5=15,7(см)

Ответ: 15,7 (см)

Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною дм

Решение. Радиус окружности равен Подставим туда наши переменные и получим
Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус l=2πr, мы можем подставить наши данные и получить решение задачи.
Так и сделаем:

l=2πr=2·π·4≈2·3,14·4=25,12(дм)

Ответ: l=25,12(дм)
 

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики. Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и захватывающие математические игры и головоломки. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом.

Литература

  • Archimedes в переводе Томаса Хита. The Works of Archimedes. — Dover, c. 260 BCE, год публикации 2002. — С. 91–93. — ISBN 978-0-486-42084-4.
  • Petr Beckmann. A History of Pi. — St. Martin’s Griffin, 1976. — ISBN 978-0-312-38185-1.
  • J. Gerretsen, P. Verdenduin. Fundamentals of Mathematics, Volume II: Geometry. — MIT Press, 1983. — С. 243–250. — ISBN 978-0-262-52094-2.
  • Miklós Laczkovich. Equidecomposability and discrepancy: A solution to Tarski’s circle squaring problem // Journal für die reine und angewandte Mathematik. — 1990. — Т. 404. — С. 77–117. (недоступная ссылка)
  • Serge Lang. Math! : Encounters with High School Students. — Springer-Verlag, 1985. — ISBN 978-0-387-96129-3.
  • David Eugene Smith, Yoshio Mikami. A history of Japanese mathematics. — Chicago: Open Court Publishing, 1914. — С. 130–132. — ISBN 978-0-87548-170-8.
  • J. M.Thijsse. Computational Physics. — Cambridge University Press, 2006. — С. 273. — ISBN 978-0-521-57588-1.

Литература

  • Archimedes в переводе Томаса Хита. The Works of Archimedes. — Dover, c. 260 BCE, год публикации 2002. — С. 91–93. — ISBN 978-0-486-42084-4.
  • Petr Beckmann. A History of Pi. — St. Martin’s Griffin, 1976. — ISBN 978-0-312-38185-1.
  • J. Gerretsen, P. Verdenduin. Fundamentals of Mathematics, Volume II: Geometry. — MIT Press, 1983. — С. 243–250. — ISBN 978-0-262-52094-2.
  • Miklós Laczkovich. Equidecomposability and discrepancy: A solution to Tarski’s circle squaring problem // Journal für die reine und angewandte Mathematik. — 1990. — Т. 404. — С. 77–117. (недоступная ссылка)
  • Serge Lang. Math! : Encounters with High School Students. — Springer-Verlag, 1985. — ISBN 978-0-387-96129-3.
  • David Eugene Smith, Yoshio Mikami. A history of Japanese mathematics. — Chicago: Open Court Publishing, 1914. — С. 130–132. — ISBN 978-0-87548-170-8.
  • J. M.Thijsse. Computational Physics. — Cambridge University Press, 2006. — С. 273. — ISBN 978-0-521-57588-1.

Шаги

Метод 1 из 2:

Через диаметр

  1. 1

    Запишите формулу для вычисления длины окружности через диаметр. Формула имеет вид: C = πd, где C — длина окружности, d — диаметр окружности. То есть длина окружности равна произведению диаметра на число пи (π примерно равно 3,14).
    X
    Источник информации

  2. 2

    Подставьте данные вам значения в формулу и найдите длину окружности.
    X
    Источник информации

    • Пример: у вас есть круглый бассейн диаметром 8 м, и вы хотите поставить вокруг него забор на расстоянии 6 м. Чтобы рассчитать длину забора, сначала найдите диаметр окружности, то есть диаметр бассейна плюс расстояние до забора с обеих сторон. В нашем примере диаметр равен 8 + 6 + 6 = 20 м. Подставьте это значение в формулу.
    • C = πd
    • C = π x 20
    • C = 62,8 м

Метод 2 из 2:

Через радиус

  1. 1

    Запишите формулу для вычисления длины окружности через радиус. Радиус равен половине диаметра, а диаметр, соответственно, — двум радиусам (2r). Тогда формула имеет вид: C = 2πr, где C — длина окружности, r — радиус окружности. То есть длина окружности равна удвоенному произведению радиуса на число пи (π примерно равно 3,14).
    X
    Источник информации

  2. 2

    Подставьте данные вам значения в формулу и найдите длину окружности. Например, вы вырезаете полоски декоративной бумаги, чтобы красиво обернуть вокруг кексов при подаче на стол. Радиус кекса равен 5 см. Подставьте это значение в формулу.
    X
    Источник информации

    • C = 2πr
    • C = 2π x 5
    • C = 10π
    • C = 31,4 см.

Советы

  • Можете купить инженерный или научный калькулятор, в котором уже есть кнопка π. Так вам придется нажимать меньше кнопок, к тому же ответ будет более точным, поскольку встроенная кнопка π имеет более точное значение, чем 3,14.
  • Чтобы вычислить окружность, зная диаметр, просто умножьте диаметр на число пи.
  • Радиус всегда равен половине диаметра.
  • При решении задачи от вас могут потребовать писать не значок π, а его числовое значение — 3,14 (или с большим количеством знаков после запятой). Уточняйте требования у учителя.
  • Если вы не можете решить задачу, попросите помощи у друзей, членов семьи или учителя. Они всегда помогут!
  • Не забывайте перепроверять вычисления, так как одна ошибка приведет к неправильному результату.
  • Не торопитесь. Помните старую пословицу — семь раз отмерь, один раз отрежь.

Интегрирование

Площадь круга путём интегрирования

Используя интегралы, мы можем просуммировать площадь круга, разделив его на концентрические окружности подобно луковице. Площадь бесконечно тонкого «слоя» радиуса t будет равна 2πt dt, то есть произведению длины окружности на толщину слоя. В результате получим элементарный интеграл для круга радиуса r.

Area(r)=∫r2πtdt=(2π)t22t=r=πr2.{\displaystyle {\begin{aligned}\mathrm {Area} (r)&{}=\int _{0}^{r}2\pi t\,dt\\&{}=\left_{t=0}^{r}\\&{}=\pi r^{2}.\end{aligned}}}

Можно разбивать круг не на кольца, а на треугольники с бесконечно малым основанием. Площадь каждого такого треугольника равна 1/2 * r * dt. Суммируя (интегрируя) все площади этих треугольников, получим формулу круга:

Area(r)=∫2πr12rdt=12rtt=2πr=πr2.{\displaystyle {\begin{aligned}\mathrm {Area} (r)&{}=\int _{0}^{2\pi r}{\frac {1}{2}}r\,dt\\&{}=\left_{t=0}^{2\pi r}\\&{}=\pi r^{2}.\end{aligned}}}

Определение величины

Площадь — это величина, характеризующая размер геометрической фигуры. Её определение — одна из древнейших практических задач. Древние греки умели находить площадь многоугольников: так, каменщикам, чтобы узнать размер стены, приходилось умножать её длину на высоту.

По прошествии долгих лет трудом многих мыслителей был выработан математический аппарат для расчета этой величины практически для любой фигуры.

На Руси существовали особые единицы измерения: копна, соха, короб, верёвка, десятина, четь и другие, так или иначе связанные с пахотой. Две последних получили наибольшее распространение. Однако от древнерусских землемеров нам досталось только само слово — «площадь».

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации