Содержание
- 1 Презентация к уроку
- 2 Опыт с маятниками
- 3 Определение и физический смысл
- 4 Звук
- 5 Какие бывают колебания?
- 6 Свободные колебания
- 7 Свободные колебания (математический и пружинный маятники)
- 8 Уравнение движения пружинного маятника
- 9 Виды пружинного маятника
- 10 Сила упругости в пружинном маятнике
- 11 Пружинный маятник
- 12 Частота колебаний маятника
- 13 Что мы узнали?
- 14 Уравнение движения пружинного маятника
- 15 Темы по физике
- 16 2.2. Свободные колебания. Пружинный маятник
Презентация к уроку
Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию
Цель урока: рассмотреть процесс колебаний на примере нитяного и пружинного маятников, выяснить зависимость периода колебаний от различных физический величин: длины нити, ускорения свободного падения, коэффициента жесткости и массы.
1. Проверка домашнего задания. (работа по формуле “Скажи ты. )
— Что называется амплитудой колебания; периодом колебания; частотой колебания; циклической частотой?
— Какой буквой обозначается циклическая частота?
— Какая математическая зависимость существует между периодом и частотой колебания?
Учащиеся в парах проверяют домашнюю работу: упражнение №24.
2. Объяснение нового материала. Работа по теме урока.
Учитель. Как вы думаете, от каких величин может завесить период колебаний нитяного маятника?
Ученики. От длины нити и массы груза.
Учитель. Начнем с длины нити. Поставим опыт с двумя маятниками, имеющими разную длину нити, но одинаковую массу (эксперимент).
Ученики. С увеличением длины нити период колебаний увеличивается.
Учитель. А теперь посмотрим как зависит период колебаний от массы груза (эксперимент: маятники имеют одинаковую длину нити и разный вес грузов).
Учащиеся. Период не зависит от массы груза.
Учитель. Но период колебания нитяного маятника зависит еще от одной физической величины. Это ускорение свободного падения. Проведем эксперимент и “поможем “ силе тяжести положив магнит. Теперь при той же массе груза возвращающая сила будет больше.
Ученики. Период уменьшился, а частота увеличилась.
Учитель. А теперь выведем формулу для расчета периода колебания нитяного маятника.
формула Гюйгенса:
g – ускорение свободного падения.
Это очень важная формула и ее надо запомнить.
Учитель. От чего может зависеть период пружинного маятника?
Ученики. От жесткости пружины, массы груза.
Учитель. Сначала на опыте посмотрим зависимость периода колебаний и жесткости пружины.(эксперимент : две пружины разной жесткости, но одинаковой длины и одинаковой массой груза)
Ученики. Период меньше там, где жесткость больше.
Учитель. А как вы думаете как зависит период от массы груза(эксперимент).
Ученики. Чем больше масса , тем больше и период.
Учитель. А теперь выведем формулу для расчета периода колебания пружинного маятника.
— возвращающая сила системы
— собственная частота системы.
Эту формулу так же запишите на обложку тетради и постарайтесь ее запомнить.
3. Закрепление материала
Решение задач Лукашик В.И.№ 873, 876.879
4.Домашнее задание. Лукашик В.И.№ 875, 877.880.
Список литературы:
1.Л.Э.Генденштейн,В.А.Орлов,Г.Г.Никифоров “Как научить решать задачи по физике (основная школа ). Подготовка к ГИА.
2. С.Е.Полянский “Поурочные разработки по физике”.
Опыт с маятниками
Взять первым можно любой маятник, разницы никакой не будет. Законы физики на то и законы физики, что они соблюдаются в любом случае. Но почему-то больше по душе математический маятник. Если кто-то не знает, что он собой представляет: это шарик на нерастяжимой нити, который крепится к горизонтальной планке, прикрепленной к ножкам (или элементам, которые играют их роль – держать систему в равновесном состоянии). Шарик лучше всего брать из металла, чтобы опыт был нагляднее.
Итак, если вывести такую систему из равновесия, приложить к шару какую-то силу (проще говоря, толкнуть его), то шарик начнет раскачиваться на нити, следуя определенной траектории. Со временем можно заметить, что траектория, по которой проходит шар, сокращается. В то же время шарик начинает все быстрее сновать туда-сюда. Это говорит о том, что частота колебаний увеличивается. А вот время, за которое шарик возвращается в начальное положение, уменьшается. А ведь время одного полного колебания, как мы выяснили ранее, и называется периодом. Если одна величина уменьшается, а другая увеличивается, то говорят об обратной пропорциональности. Вот мы и добрались до первого момента, на основании которого строятся формулы для определения периода колебаний. Если же мы возьмем для проведения пружинный маятник, то там закон будет наблюдаться немного в другом виде. Для того чтобы он был наиболее наглядно представлен, приведем систему в движение в вертикальной плоскости. Чтобы было понятнее, сначала стоило сказать, что собой представляет пружинный маятник. Из названия понятно, что в его конструкции должна присутствовать пружина. И это действительно так. Опять же таки, у нас есть горизонтальная плоскость на опорах, к которой подвешивается пружина определенной длины и жесткости. К ней, в свою очередь, подвешивается грузик. Это может быть цилиндр, куб или другая фигурка. Это может быть даже какой-то сторонний предмет. В любом случае, при выведении системы из положения равновесия, она начнет совершать затухающие колебания. Наиболее четко просматривается увеличение частоты именно в вертикальной плоскости, без всякого отклонения. На этом с опытами можно закончить.
Итак, в их ходе мы выяснили, что период и частота колебаний это две физические величины, которые имеют обратную зависимость.
Определение и физический смысл
Периодом колебаний называется такой промежуток времени, при котором тело или система совершают одно колебание (обязательно полное). Параллельно можно отметить параметр, при выполнении которого колебание может считаться полным. В роли такого условия выступает возвращение тела в его первоначальное состояние (к первоначальной координате). Очень хорошо проводится аналогия с периодом функции. Ошибочно, кстати, думать, что она имеет место исключительно в обыкновенной и высшей математике. Как известно, эти две науки неразрывно связаны. И с периодом функций можно столкнуться не только при решении тригонометрических уравнений, но и в различных разделах физики, а именно речь идет о механике, оптике и прочих. При переносе периода колебаний из математики в физику под ним нужно понимать просто физическую величину (а не функцию), которая имеет прямую зависимость от проходящего времени.
Звук
Звук – это колебания упругой среды, воспринимаемые органом слуха.
Условия, необходимые для возникновения и ощущения звука:
- наличие источника звука;
- наличие упругой среды между источником и приемником звука;
- наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
- мощность звука должна быть достаточной для восприятия.
Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.
Классификация звуковых волн:
- инфразвук (\( \nu \) < 16 Гц);
- звуковой диапазон (16 Гц < \( \nu \) < 20 000 Гц);
- ультразвук (\( \nu \) > 20 000 Гц).
Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.
Скорость звука зависит
от упругих свойств среды:
в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;
от температуры среды:
в воздухе при температуре 0°С – 331 м/с, в воздухе при температуре +15°С – 340 м/с.
Характеристики звуковой волны
- Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
- Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
- Тембр – это окраска звука.
Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.Шум – хаотическая смесь тонов.
Какие бывают колебания?
Колебания подразделяются на гармонические и ангармонические, а также на периодические и непериодические. Логично было бы предположить, что в случае гармонических колебаний они совершаются согласно некоторой гармонической функции. Это может быть как синус, так и косинус. При этом в деле могут оказаться и коэффициенты сжатия-растяжения и увеличения-уменьшения. Также колебания бывают затухающими. То есть, когда на систему действует определенная сила, которая постепенно “тормозит” сами колебания. При этом период становится меньше, в то время как частота колебаний неизменно увеличивается. Очень хорошо демонстрирует такую вот физическую аксиому простейший опыт с использованием маятника. Он может быть пружинного вида, а также математического
Это неважно. Кстати, период колебаний в таких системах будет определяться разными формулами
Но об этом чуточку позже. Сейчас же приведем примеры.
Свободные колебания
Колебания – это изменение некоторого параметра системы, которое происходит вокруг определенного среднего значения. Колебания могут быть периодическими (колебания маятника) и непериодическими (колебания флага на ветру).
Рис. 1. Колебания в природе.
Также колебания могут быть вынужденными и свободными. Вынужденные колебания – это колебания под действием внешних сил. Свободные колебания – это колебания под действием внутренних сил.
Флаг на ветру – это пример вынужденных колебаний. Он колеблется исключительно под воздействием ветра. Маятник – пример свободных колебаний. Нитяной маятник колеблется под действием силы тяжести, причина которой – масса самого маятника. Пружинный маятник колеблется под воздействием силы упругости, причина которой – внутренние напряжения деформации пружины.
Свободные колебания (математический и пружинный маятники)
Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.
Условия возникновения свободных колебаний:
- при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
- силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.
При наличии сил трения свободные колебания будут затухающими. Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.
Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.
Период колебаний математического маятника:
Частота колебаний математического маятника:
Циклическая частота колебаний математического маятника:
Максимальное значение скорости колебаний математического маятника:
Максимальное значение ускорения колебаний математического маятника:
Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:
Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:
Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:
Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту \( h \), определяется по формуле:
где \( l \) – длина нити, \( \alpha \) – угол отклонения от вертикали.
Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.
Период колебаний пружинного маятника:
Частота колебаний пружинного маятника:
Циклическая частота колебаний пружинного маятника:
Максимальное значение скорости колебаний пружинного маятника:
Максимальное значение ускорения колебаний пружинного маятника:
Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:
Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:
Важно! Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий
Уравнение движения пружинного маятника
Пусть начало координат находится в точке покоя маятника. Тогда, если маятник выведен из состояния равновесия на расстояние $x$, со стороны пружины на него начинает действовать сила $F=-kx$.
Знак «минус» означает, что направление действия этой силы противоположно смещению маятника.
Согласно второму закону Ньютона, если на тело действует сила, то оно приобретает ускорение:
$$a=-{kxover m}$$
Скорость – это производная координаты. А ускорение – производная скорости. Следовательно, ускорение – это вторая производная координаты. Получим уравнение:
$$x”=-{kover m}x$$
То есть, вторая производная координаты пропорциональна самой координате, взятой с противоположным знаком. Это дифференциальное уравнение, и в высшей математике доказывается, что единственная функция, являющаяся его решением – это круговая функця (синус или косинус).
Полное же решение данного уравнения выглядит следующим образом:
$$x(t)=A cos sqrt{kover m}t$$
Если взять вторую производную этой функции, то можно убедиться, что она равна самой себе, с противоположным знаком и необходимым коэффициентом.
Виды пружинного маятника
Выделяют несколько различных видов пружинного маятника. Стоит учитывать, что классификация может проводится по типу устанавливаемой пружины. Среди особенностей отметим:
- Довольно большое распространение получили вертикальные колебания, так как в этом случае на груз не оказывается сила трения и другое воздействие. При вертикальном расположении груза существенно увеличивается степень воздействия силы тяжести. Распространен этот вариант исполнения при проведении самых различных расчетов. За счет силы тяжести есть вероятность того, что тело в исходной точке будет совершать большое количество инерционных движений. Этому также способствует упругость и инерция движения тела в конце хода.
- Также применяется горизонтальный пружинный маятник. В этом случае груз находится на опорной поверхности и на момент перемещения также возникает трение. При горизонтальном расположении сила тяжести работает несколько иначе. Горизонтальное расположение тела получило широкое распространение в различных задачах.
Рассчитывается движение пружинного маятника можно при использовании достаточно большого количества различных формул, который должны учитывать воздействие всех сил. В большинстве случаев устанавливается классическая пружина. Среди особенностей отметим следующее:
- Классическая витая пружина сжатия сегодня получила весьма широкое распространение. В этом случае между витками есть пространство, которое называется шагом. Пружина сжатия может и растягиваться, но зачастую она для этого не устанавливается. Отличительной особенностью можно назвать то, что последние витки выполнены в виде плоскости, за счет чего обеспечивается равномерное распределения усилия.
- Может устанавливаться вариант исполнения для растяжения. Он рассчитан на установку в случае, когда приложенное усилие становится причиной увеличения длины. Для крепления проводится размещение крючков.
Распространены оба варианта исполнения
При этом важно уделить внимание тому, чтобы сила прикладывалась параллельно оси. В противном случае есть вероятность смещения витков, что становится причиной возникновения серьезных проблем, к примеру, деформации
Сила упругости в пружинном маятнике
Следует учитывать тот момент, что до деформирования пружины она находится в положении равновесия. Приложенная сила может приводить к ее растягиванию и сжиманию. Сила упругости в пружинном маятнике рассчитывается в соответствии с тем, как воздействует закон сохранения энергии. Согласно принятым нормам возникающая упругость пропорциональна смещению тела. В этом случае кинетическая энергия рассчитывается по формуле: F=-kx. В данном случае применяется коэффициент жесткости пружины.
Выделяют довольно большое количество особенностей воздействия силы упругости в пружинном маятнике. Среди особенностей отметим:
- Максимальная сила упругости возникает на момент, когда тело находится на максимальном расстоянии от положения равновесия. При этом в подобном положении отмечается максимальное значение ускорение тела. Не следует забывать о том, что может проводится растягивание и сжатие пружины, оба варианта несколько отличается. При сжатии минимальная длина изделия ограничивается. Как правило, она имеет длину, равную диаметру витка умноженное на количество. Слишком большое усилие может стать причиной смещения витков, а также деформации проволоки. При растяжении есть момент удлинения, после которого происходит деформация. Сильное удлинение приводит к тому, что возникающей силы упругости недостаточно для возврата изделия в первоначальное состояние.
- При сближении тела к месту равновесия происходит существенное уменьшение длины пружины. За счет этого наблюдается постоянное снижение показателя ускорения. Все это происходит за счет воздействия усилия упругости, которая связано с типом применяемого материала при изготовлении пружины и ее особенностями. Длина уменьшается за счет того, что расстояние между витками снижается. Особенностью можно назвать равномерное распределение витков, лишь только в случае дефектов есть вероятность нарушения подобного правила.
- На момент достижения точки равновесия сила упругости снижается до нуля. Однако, скорость не снижается, так как тело движется по инерции. Точка равновесия характеризуется тем, что длина изделия в ней сохраняется на протяжении длительного периода при условии отсутствия внешнего деформирующего усилия. Точка равновесия определяется в случае построения схемы.
- После достижения точки равновесия возникающая упругость начинает снижать скорость перемещения тела. Она действует в противоположном направлении. При этом возникает усилие, которое направлено в обратную сторону.
- Дойдя крайней точки тело начинает двигаться в противоположную сторону. В зависимости от жесткости установленной пружины подобное действие будет повторятся неоднократно. Протяженность этого цикла зависит от самых различных моментов. Примером можно назвать массу тела, а также максимальное приложенное усилие для возникновения деформации. В некоторых случаях колебательные движения практически незаметны, но они все же возникают.
Приведенная выше информация указывает на то, что колебательные движения совершаются за счет воздействия упругости. Деформация происходит за счет приложенного усилия, которое может варьировать в достаточно большом диапазоне, все зависит от конкретного случая.
Пружинный маятник
Пружинный маятник — это колебательная система, состоящая из материальной точки массой т и пружины. Рассмотрим горизонтальный пружинный маятник (рис. 13.12, а). Он представляет собой массивное тело, просверленное посередине и надетое на горизонтальный стержень, вдоль которого оно может скользить без трения (идеальная колебательная система). Стержень закреплен между двумя вертикальными опорами. К телу одним концом прикреплена невесомая пружина. Другой ее конец закреплен на опоре, которая в простейшем случае находится в покое относительно инерциальной системы отсчета, в которой происходят колебания маятника. В начале пружина не деформирована, и тело находится в положении равновесия С. Если, растянув или сжав пружину, вывести тело из положения равновесия, то со стороны деформированной пружины на него начнет действовать сила упругости, всегда направленная к положению равновесия. Пусть мы сжали пружину, переместив тело в положение А, и отпустили \((\upsilon_0=0).\) Под действием силы упругости оно станет двигаться ускоренно. При этом в положении А на тело действует максимальная сила упругости, так как здесь абсолютное удлинение xm пружины наибольшее. Следовательно, в этом положении ускорение максимальное. При движении тела к положению равновесия абсолютное удлинение пружины уменьшается, а следовательно, уменьшается ускорение, сообщаемое силой упругости. Но так как ускорение при данном движении сонаправлено со скоростью, то скорость маятника увеличивается и в положении равновесия она будет максимальна. Достигнув положения равновесия С, тело не остановится (хотя в этом положении пружина не деформирована, и сила упругости равна нулю), а обладая скоростью, будет по инерции двигаться дальше, растягивая пружину. Возникающая при этом сила упругости направлена теперь против движения тела и тормозит его. В точке D скорость тела окажется равной нулю, а ускорение максимально, тело на мгновение остановится, после чего под действием силы упругости начнет двигаться в обратную сторону, к положению равновесия. Вновь пройдя его по инерции, тело, сжимая пружину и замедляя движение, дойдет до точки А (так как трение отсутствует), т.е. совершит полное колебание. После этого движение тела будет повторяться в описанной последовательности. Итак, причинами свободных колебаний пружинного маятника являются действие силы упругости, возникающей при деформации пружины, и инертность тела.
По закону Гука \(~F_x=-kx.\) По второму закону Ньютона \(~F_x = ma_x.\) Следовательно, \(~ma_x = -kx.\) Отсюда
\(a_x = -\frac{k}{m}x\) или \(a_x + -\frac{k}{m}x = 0 \) — динамическое уравнение движения пружинного маятника.
Видим, что ускорение прямопропорционально смешению и противоположно ему направлено. Сравнивая полученное уравнение с уравнением гармонических колебаний \(~a_x + \omega^2 x = 0,\) видим, что пружинный маятник совершает гармонические колебания с циклической частотой \(\omega = \sqrt \frac{k}{m}\) Так как \(T = \frac{2 \pi}{\omega},\) то
\(T = 2 \pi \sqrt{ \frac{m}{k} }\)— период колебаний пружинного маятника.
По этой же формуле можно рассчитывать и период колебаний вертикального пружинного маятника (рис. 13.12. б). Действительно, в положении равновесия благодаря действию силы тяжести пружина уже растянута на некоторую величину x, определяемую соотношением \(~mg=kx_0.\) При смещении маятника из положения равновесия O на х проекция силы упругости \(~F’_{ynpx} = -k(x_0 + x)\) и по второму закону Ньютона \(~ma_x=-k(x_0+ x) + mg.\) Подставляя сюда значение \(~kx_0=mg,\) получим уравнение движения маятника \(a_x + \frac{k}{m}x = 0,\) совпадающее с уравнением движения горизонтального маятника.
Частота колебаний маятника
Для получения формулы, выражающей частоту колебаний маятника, вспомним, что колебания совершаются под действием силы, тем большей, чем больше отклонение от равновесия. Например, для пружинного маятника с жесткостью пружины $k$ сила будет равна $F=-kx$, а значит ускорение, приобретаемое грузом, по второму закону Ньютона будет равно:.
$$a=-{kx\over m}$$
Ускорение является второй производной координаты. То есть:
$$x”=-{k\over m}x$$
В высшей математике доказывается, что единственная функция, удовлетворяющая данному условию – это круговая функция (синус или косинус):
$$x(t)=A cos \sqrt{k\over m}t$$
Сравним эту формулу с формулой гармонических колебаний:
$$x(t)=A cos( \omega t+\varphi)$$
Можно видеть, что коэффициент $\sqrt {k\over m}$ представляет собой круговую частоту. А значит, частота колебаний маятника равна:
$$\nu={\omega \over 2\pi}={1\over 2\pi}\sqrt {k\over m}$$
Процессы, происходящие в нитяном маятнике, очень близки к процессам, происходящим в пружинном. Поэтому частота колебаний нитяного маятника имеет формулу такого же вида, только в ней жесткость пружины является аналогом ускорения свободного падения, а аналогом массы является длина маятника:
$$\nu={1\over 2\pi}\sqrt {\mathrm{g}\over l}$$
На графике частота колебаний маятника равна количеству полных колебаний, происходящих в единицу времени:
Рис. 3. График колебаний маятника.
Что мы узнали?
И в нитяном и в пружинном маятнике колебания возникают потому, что при выведении их из положения равновесия возникает сила, стремящаяся вернуть маятник в равновесие, тем большая, чем больше отклонение. Единственная функция, удовлетворяющая этому условию – это круговая функция, частоту которой можно получить из ее формулы или графика.
Уравнение движения пружинного маятника
Пусть начало координат находится в точке покоя маятника. Тогда, если маятник выведен из состояния равновесия на расстояние $x$, со стороны пружины на него начинает действовать сила $F=-kx$.
Согласно второму закону Ньютона, если на тело действует сила, то оно приобретает ускорение:
$$a=-{kx\over m}$$
Скорость – это производная координаты. А ускорение – производная скорости. Следовательно, ускорение – это вторая производная координаты. Получим уравнение:
$$x”=-{k\over m}x$$
То есть, вторая производная координаты пропорциональна самой координате, взятой с противоположным знаком. Это дифференциальное уравнение, и в высшей математике доказывается, что единственная функция, являющаяся его решением – это круговая функця (синус или косинус).
$$x(t)=A cos \sqrt{k\over m}t$$
Если взять вторую производную этой функции, то можно убедиться, что она равна самой себе, с противоположным знаком и необходимым коэффициентом.
Темы по физике
- Механика (56)
- Кинематика (19)
- Динамика и статика (32)
- Гидростатика (5)
- Молекулярная физика (25)
- Уравнение состояния (3)
- Термодинамика (15)
- Броуновское движение (6)
- Прочие формулы по молекулярной физике (1)
- Колебания и волны (22)
- Оптика (9)
- Геометрическая оптика (3)
- Физическая оптика (5)
- Волновая оптика (1)
- Электричество (39)
- Атомная физика (15)
- Ядерная физика (3)
Темы по математике
- Квадратный корень, рациональные переходы (1)
- Квадратный трехчлен (1)
- Координатный метод в стереометрии (1)
- Логарифмы (1)
- Логарифмы, рациональные переходы (1)
- Модуль (1)
- Модуль, рациональные переходы (1)
- Планиметрия (1)
- Прогрессии (1)
- Производная функции (1)
- Степени и корни (1)
- Стереометрия (1)
- Тригонометрия (1)
- Формулы сокращенного умножения (1)
2.2. Свободные колебания. Пружинный маятник
Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.
Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению (см. §2.1):
В этом соотношении ω – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закона Гука:
Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими.
Таким образом, груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную в отсутствие трения совершать свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором.
|
Рисунок 2.2.1.Колебания груза на пружине. Трения нет |
Круговая частота ω свободных колебаний груза на пружине находится из второго закона Ньютона:
Частота ω называется собственной частотой колебательной системы.
Период T гармонических колебаний груза на пружине равен
При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x, равную
ωT
Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела a и координатой x: ускорение является второй производной координаты тела x по времени t:
Поэтому второй закон Ньютона для груза на пружине может быть записан в виде
Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида
Уравнение (*) называется уравнением свободных колебаний
Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω или период T. Такие параметры колебательного процесса, как амплитуда xm и начальная фаза φ, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени
Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то xm = Δl, φ = 0.
Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость
то ,
Таким образом, амплитуда xm свободных колебаний и его начальная фаза φ определяются начальными условиями.
Модель. Колебания груза на пружине |
Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2.2.2 показан угловой аналог линейного гармонического осциллятора, совершающий крутильные колебания. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил Mупр упругой деформации кручения:
Это соотношение выражает закон Гука для деформации кручения. Величина χ аналогична жесткости пружины k. Второй закон Ньютона для вращательного движения диска записывается в виде (см. §1.23)
I = ICε
По аналогии с грузом на пружине можно получить:
Крутильный маятник широко используется в механических часах. Его называют балансиром. В балансире момент упругих сил создается с помощью спиралевидной пружинки.
Рисунок 2.2.2.Крутильный маятник |