Андрей Смирнов
Время чтения: ~8 мин.
Просмотров: 0

Как из метана получить ацетилен

Как получить ацетилен

Из метана в домашних условиях получить ацетилен очень сложно. Самый простой метод выделения данного газа – это реакция воды с карбидом кальция. Многие из вас, наверное, помнят, как бросали в лужи кусочки этого вещества и какая происходила реакция. При этом отмечалось бурное шипение. Что касается карбида кальция, то он постепенно таял, образовывая большое количество пены. Подобную реакцию можно записать так:

СаС2+2Н2О=С2Н2+Са(ОН)2.

Многие используют технический карбид кальция, который содержит большое количество примесей. В результате этого при реакции с водой вещество выделяет неприятный запах. Возникает он из-за образования вместе с ацетиленом незначительного количества паров ядовитых газов. Чаще всего это фосфин, сероводород и так далее. Этот способ считается самым распространенным, так как получить ацетилен из метана можно только при помощи специального оборудования.

Получение — ацетилен

Общая схема основных современных методов химической переработки природных и промышленных нефтяных газов.

Получение ацетилена на основе метана открывает безграничные просторы для развития промышленного органического синтеза на основе природного газа через ацетилен.

Получение ацетилена и изучение его свойств. Выполняя эту работу, следует помнить, что ацетилен с воздухом образует смеси, способные при поджигании давать сильные взрывы. Поэтому ацетилен ( так же как метан и этилен в предыдущих работах) собирать в газометр, предварительно заполненный водой так, чтобы в нем не оставалось воздуха. В этом случае возможность взрыва ацетилена в газометре совершенно устраняется.

Получение ацетилена карбидным способом и из метана, химические свойства, применение.

Получение ацетилена из метана.

Получение ацетилена электрокрекингом углеводород-газов давно привлекало внимание ученых. В СССР в 30 — х годах этот метод подробно изучался многими исследователями

При изучении крекинга самых разнообразных по составу углеводородных газов было показано, что на расход электроэнергии заметно влияют присутствующие в сырье высшие углеводороды, была доказана необходимость быстрого вывода ацетилена из зоны высоких температур, так как в противном случае неизбежны побочные реакции, и многие другие важные теоретические и практические положения этого процесса.

Получения ацетилена и создает благоприятные предпосылки для мощного развития производства большого числа химических продуктов ( аммиака и его производных, метанола, формальдегида и др.) при более низких капитальных, эксплуатационных, энергетических и трудовых затратах.

Равновесные концентрации окиси азота в мольных процентах в зависимости от температуры для воздуха ( а и стехиометрической смеси ( а — без учета диссоциации и с учетом диссоциации и кислорода и азота на атомы.

Получение ацетилена действием дуги на газообразный углеводород ( электрокрекинг) сопряжено с образованием значительных количеств элементарного углерода в виде сажи.

Получение ацетилена карбидным способом и из метана, химические свойства, применение.

Получение ацетилена чисто термическим путем осуществляется при 1400 — 1500 С в регенеративных печах или путем электрокрекинга. Наиболее прогрессивным методом получения ацетилена из природного газа ( метана) является окислительный пиролиз. Сущность этого метода заключается в том, что тепло, необходимое для реакции, получается за счет сжигания ч сти исходного сырья в кислороде. Подачу кислорода регулируют таким образом, чтобы выделяющегося тепла горения хватило для поддержания постоянной температуры в реакторе. Так как пиролизу предшествует горение, то образование радикалов ( метила и метилена) значительно облегчается.

Схема водяного затзора.

Получение ацетилена из генераторов связано с определенными трудностями. Ацетиленовые генераторы взрывоопасны, нуждаются в специальном обслуживании и часто для них требуется специальное помещение.

Получение ацетилена возможно благодря тому, что этот углеводород при высоких температурах пиролиза 1400 — 1500 термодинамически более устойчив чем все остальные углеводороды.

Получение ацетилена из метана. Синтез ацетилена из метана ( а также из смеси газов, содержащей метан) представляет собой один из примеров органического синтеза в электрическом разряде, осуществленного на практике в значительных масштабах и успешно конкурирующего с обычным, карбидным методом получения ацетилена. Для получения ацетилена из метана применялись различные формы электрического разряда. Так как, однако, уже первые исследования показали, что в тихом разряде выход ацетилена ничтожно мал, то все дальнейшие попытки осуществления этой реакции с выходом С2Н2, представляющим практический интерес, в основном были сосредоточены на тлеющем и дуговом разрядах.

Получение алканов

Крекинг алканов с изначально большей длиной цепи

Процесс, используемый в промышленности, протекает в интервале температур 450-500oC в присутствии катализатора и при температуре 500-700oC в отсутствие катализатора:

Важность промышленного процесса крекинга заключается в том, что он позволяет повысить выход бензина из тяжелых фракций нефти, которые не представляют существенной ценности сами по себе. алкенов:

алкенов:

алкинов и алкадиенов:

Газификация каменного угля

в присутствии никелевого катализатора при повышенных температуре и давлении может быть использована для получения метана:

Процесс Фишера-Тропша

С помощью данного метода могут быть получены предельные углеводороды нормального строения, т.е. алканы. Синтез алканов осуществляют, используя синтез-газ (смеси угарного газа CO и водорода H2), который пропускают через катализаторы при высоких температуре и давлении:

Реакция Вюрца

С помощью данной реакции могут быть получены углеводороды с большим числом атомов углерода в цепи, чем в исходных углеводородах. Реакция протекает при действии на галогеналканы металлического натрия:

Декарбоксилирование солей карбоновых кислот

Сплавление твердых солей карбоновых кислот со щелочами приводит к реакции декарбоксилирования, при этом образуются углеводород с меньшим числом атомов углерода и карбонат металла (реакция Дюма):

Крекинг алканов

Реакция в общем виде уже была рассмотрена выше (получение алканов). Пример реакции крекинга:

Дегидрогалогенирование галогеналканов протекает при действии на них спиртового раствора щелочи:

Дегидратация спиртов

Данный процесс протекает в присутствии концентрированной серной кислоты и нагревании до температуры более 140оС:

Обратите внимание, что и в случае дегидратации, и в случае дегидрогалогенирования отщепление низкомолекулярного продукта (воды или галогеноводорода) происходит по правилу Зайцева: водород отщепляется от менее гидрированного атома углерода

Дегалогенирование вицинальных дигалогеналканов

Вицинальными дигалогеналканами называют такие производные углеводородов, у которых атомы хлора прикреплены к соседним атомам углеродной цепи.

Дегидрогалогенирование вицинальных галогеналканов можно осуществить, используя цинк или магний:

Дегидрирование алканов

Пропускание алканов над катализатором (Ni, Pt, Pd, Al2O3 или Cr2O3) при высокой температуре (400-600оС) приводит к образованию соответствующих алкенов:

Получение алкадиенов

Дегидрирование бутана и бутена-1

В настоящий момент основным методом производства бутадиена-1,3 (дивинила)  является каталитическое дегидрирование бутана, а также бутена-1, содержащихся в газах вторичной переработки нефти. Процесс проводят в присутствии катализатора на основе оксида хрома (III) при 500—650°С:

Действием высоких температур в присутствии катализаторов на изопентан (2-метилбутан) получают промышленно важный продукт – изопрен (исходное вещество для получения так называемого «натурального» каучука):

Ранее (в Советском Союзе) бутадиен-1,3 получали по методу Лебедева из этанола:

Осуществляется действием на галогенпроизводные спиртового раствора щелочи:

Получение алкинов

Пиролиз метана

При нагревании до температуры 1200-1500оС метан подвергается реакции дегидрирования с одновременным удваиванием углеродной цепи – образуются ацетилен и водород:

Гидролиз карбидов щелочных и щелочноземельных металлов

Действием на карбиды щелочных и щелочно-земельных металлов воды или кислот-неокислителей в лаборатории получают ацетилен. Наиболее дешев и, как следствие, наиболее доступен для использования карбид кальция:

Крекинг нефтепродуктов

В настоящее время можно не только из метана получить ацетилен. Основным промышленным методом производства этого представителя алкинов считается крекинг (расщепление) углеводородов. Если из метана получить ацетилен, то энергетические затраты будут минимальными. Помимо недорогого и доступного сырья, такая технология привлекает производителей углеводородного сырья простотой технологического оборудования, применяемого в процессе дегидрирования метана.

Существует два варианта проведения подобного химического процесса. Первый способ базируется на пропускании метана через электроды, раскаленные до 1600 градусов по Цельсию. Технология предполагает резкое охлаждение полученного продукта. Второй вариант дегидрирования метана с получением ацетилена предполагает применение энергии, которая образуется при частичном горении этого алкина.

Баллоны, в которых содержится ацетилен, не могут комплектоваться бронзовыми вентилями, так как в составе бронзы содержится медь. Взаимодействие данного металла с ацетиленом сопровождается получением взрывоопасной соли.

Получение ароматических углеводородов (аренов)

Декарбоксилирование солей ароматических карбоновых кислот

Сплавлением солей ароматических карбоновых кислот со щелочами удается получить ароматические углеводороды с меньшим числом атомов углерода в молекуле по сравнению с исходной солью:

Тримеризация ацетилена

При пропускании ацетилена при температуре 400°C над активированным углем с хорошим выходом образуется бензол:

Аналогичным способом можно получать симметричные триалкилзамещенные бензолы из гомологов ацетилена. Например:

Дегидрирование гомологов циклогексана

При действии на циклоалканы с 6-ю атомами углерода в цикле высокой температуры в присутствии платины происходит дегидрирование с образованием соответствующего ароматического углеводорода:

Дегидроциклизация

Также возможно получение ароматических углеводородов из углеводородов нециклического строения при наличии углеродной цепи с длиной в 6 или более атомов углерода (дегидроциклизация). Процесс осуществляют при высоких температурах в присутствии платины или любого другого катализатора гидрирования-дегидрирования (Pd, Ni):

Алкилирование

Получение гомологов бензола алкилированием ароматических углеводородов хлорпроизоводными алканов, алкенами или спиртами:

Меры безопасности при работе с ацетиленом

  • содержание ацетилена в воздухе рабочей зоны необходимо непрерывно контролировать автоматическими приборами, сигнализирующими о превышении допустимой взрывобезопасной концентрации ацетилена в воздухе, равной 0,46%;
  • при работе с ацетиленовыми баллонами поблизости не должно быть открытого пламени или отопительной системы; запрещается работать с баллонами, находящимися в горизонтальном положении, с незакрепленными баллонами, с неисправными баллонами; необходимо использовать неискрящийся инструмент, освещение и электрическое оборудование только во взрывобезопасном исполнении;
  • в случае обнаружения утечки ацетилена из баллона (по запаху и звуку) необходимо по возможности быстро закрыть вентиль баллона специальным неискрящимся ключом;
  • при нагреве баллон с ацетиленом может взорваться с крайне разрушительными последствиями; в случае пожара необходимо по возможности удалить из опасной зоны холодные баллоны с ацетиленом, оставшиеся баллоны постоянно охлаждать водой или специальными составами до полного остывания; при загорании ацетилена, выходящего из баллона, необходимо по возможности быстро закрыть вентиль баллона специальным неискрящимся ключом и поливать баллон водой до полного остывания; при сильном возгорании пожаротушение необходимо производить с безопасного расстояния; при пожаротушении рекомендуется применять огнетушители с содержанием флегматизирующей концентрации азота 70% по объему, диоксида углерода 57% по объему, водяные струи, песок, сжатый азот, асбестовое полотно, токораспыленную пену и воду; при тушении сильного пожара используются огнезащитные костюмы, противогазы и т.п.
Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации