Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Пассивация нержавеющей стали

4 Зачем, когда и как пассивировать нержавейку?

Как видно, нержавеющая сталь идеально будет служить при отсутствии других материалов и без механических воздействий. Но это возможно разве только в музее. Конструкции всегда находятся в работе, а часто и в крайне агрессивной среде. Вот тогда даже нержавеющей стали нужно дополнительное пассивирование. Например, очень часто такую обработку просят сделать для труб, крепежей, обшивки погружных морских конструкций. Но всегда ли уместно это делать?

Пассивирование нержавеющей стали

Для успокоения совести, конечно, можно производить такие операции всегда, как только возникает подозрение на неспособность нержавейки противостоять будущим воздействиям рабочих сред. Но специалисты убеждены, что такая обработка будет лишней во многих случаях. Во-первых, нужно проанализировать возможные химические процессы, иногда вашим конструкциям ничего не грозит, а дополнительная пассивация только ухудшит состояние сплава.

Во-вторых, нужно иметь возможность контролировать процесс пассивирования нержавеющей стали, чтобы получить равномерное и цельное покрытие. Например, это очень проблематично в случае труб, ведь проверить состояние поверхности внутри почти невозможно. Может оказаться, что где-то участок был обработан недостаточно, и коррозия все равно произойдет. Поэтому пассивирование уместно в тех случаях, когда защитить нужно внешнюю сторону детали.

Пассивация труб

2 Почему коррозия все-таки одолевает нержавеющую сталь?

Несмотря на изложенную картину, нержавейка подвергается коррозии. Ржавчина на ее поверхности приводит в недоумение людей, кто не совсем знаком с химической природой этого явления. Многие начинают сомневаться, нержавейка ли это вовсе? Но даже вполне настоящая пассивированная сталь может подвергаться различного рода коррозии. И причин этому немало.

Первой и вполне очевидной будет недостаток хрома или его неравномерность в структуре сплава. Также контакты с менее устойчивыми разновидностями стали (углеродистой, например) вызовут процесс ржавления. Часто детали подвергаются сварке, и даже если изначально нержавейка была очень высокого качества, после такой обработки она начинает корродировать. Обычно это легко предупредить зачисткой и полировкой поверхности шва, чтобы там не осталось даже следовых количеств сварочных материалов, например, частичек железа (Fe).

Нержавейка высокого качества

Занести нежелательные количества железа в структуру нержавейки можно и другими способами. Если рядом с ней пилят, режут, шлифуют обычную сталь, то пыль с Fe обязательно достигнет ее и запустит процесс коррозии. Но даже все предусмотрев и изолировав ваши детали, вы можете забыть, что когда-то использовали для обычной стали определенный шлифовальный круг и решите им обработать нержавеющую. Это обернется коррозией. Да и любой другой инструмент должен применяться на однотипных материалах, например, только на нержавейке.

После сварки часто нужна очистка шва, делают это металлической щеткой, лучше завести такое приспособление для низколегированных сплавов и нержавейки отдельно. К слову, любые деструктивные поверхностные обработки существенно приближают появление коррозии, так что частить с этим не рекомендуется. Если все-таки пришлось заниматься механической очисткой, то проверьте, осталась ли на детали железная пыль и не появились ли повреждения оксидной пленки. На производстве при наличии лаборатории это можно сделать за пару минут с помощью химреактивов – воды, азотной кислоты и ферроцианида калия. Места с включениями свободного железа станут синие. В другом случае потребуется несколько часов и простая вода из крана. Нужно всего лишь смочить поверхность и дать постоять, проблемные зоны начнут ржаветь.

Очистка сварочного шва нержавеющей стали

Этапы химического пассивирования

В процессе формирования однородной инертной пленки на поверхности изделий из нержавейки важно учитывать особенности состава стали и степень повреждения защитного покрытия. Химическое пассивирование сегодня является неотъемлемой частью в работе с нержавеющими материалами

Это позволяет продлить срок их службы, избавиться от ржавчины и повреждений, а также предотвратить образование коррозии. Во время проведения работ по пассивации следует соблюдать поочередность этапов:

Сначала осуществляется очистка материалов от загрязнений. Удаляются жирные пятна, ржавчина и прочие налеты. При технологии травления химическими кислотами изделие погружают в ванну со смесью соляной кислоты и серной. При температуре от 60 до 80 градусов сталь здесь выдерживается в течение 20-40 минут. Если применяется метод травления готовыми смесями кислот, то для очистки используются специальные концентрированные составы (пасты, гели, спреи), которые наносятся на поверхность стали ручным способом. Химикат оставляют ориентировочно на 30 минут. Затем проводится тщательная промывка изделий водой. Начинается процесс пассивации. В первом случае сталь погружают в кислотную ванну. Во втором – наносят гели, пасты, спреи и прочие готовые химические составы на поверхность изделия. В случае с готовыми средствами предусмотрен еще один этап – обработка пассиватором. Это позволяет обеспечить принудительное образование оксидной пленки на нержавеющей стали. Последний этап состоит из тщательной промывки изделия.

Состав нержавеющей стали и марка играют далеко не последнюю роль во внешнем виде изделия после химического пассивирования. Некоторые виды имеют темный цвет, другие же более светлый. Но независимо от этого данный способ обработки стали имеет целый перечень преимуществ:

улучшается сопротивление к образованию коррозии; происходит равномерное сглаживание поверхности изделия; удаляются заусенцы, царапины, вмятины; срок службы изделий значительно увеличивается.

Пассивация металлов

Все металлы неодинаково реагируют на ту или иную среду. Поэтому для разных типов металлов осуществляется определённая пассивация. Есть слабые окислители, пассивирующие магний, титан, а также сильные, хорошо воздействующие на алюминий, хром. Для железа используют серную и азотную кислоты высокой интенсивности, после кратковременного воздействия образуется пленка, и реакция прекращается.

Способы пассивации металлов:

  • 1. Контакт материала с пассиватором осуществляется посредствам вмакивания в жидкость, обмазывания или опрыскивания.
  • 2. При контакте металла с пассиватором через него пропускают электрический ток, это позволяет воспроизвести равномерную и стойкую защиту.

Электрохимический способ применяют, к примеру, для пассивации меди. Для этого используют специальные хромосодержащие составы, через которые пропускают электрический ток. Для алюминия используется фтороводородная смесь, дихромата натрия и серная кислота применяются для пассивации цинка. Как видите, для каждого металла существуют свои пассиваторы, более того, зачастую они состоят из нескольких компонентов.

Если вам нужно пассивировать определённый метал, не стоит экспериментировать, лучше купить уже готовый состав. Процесс пассивирования не долгий, иногда достаточно и нескольких секунд. Стоит знать, что чем дольше вы будете производить пассивацию, тем характернее станут изменения на поверхности. Но здесь тоже всё индивидуально, к примеру, после погружения цинкового изделия в раствор на 3-5 секунд, образуется радужная плёнка с зеленоватым отливом, а продержав его в растворе 30 секунд, вы получите коричневый налёт. Поэтому сроки выдержки при пассивации крайне важны.

Не следует забывать и о том, что пассивация, это процесс, происходящий на поверхности. Если же металл будет грязным или ржавых, реакция произойдёт не с самим металлом, а примесями и сторонними частицами. Поэтому перед тем, как производить обработку пассиватором, надлежит обработать изделие, вымыть или зачистить, в зависимости от типа загрязнения. Если задействуется электрохимический способ обработки, здесь должны соблюдаться необходимые условия, к примеру, при пассивации латуни, железа, необходимо определённое напряжение. Купить качественные пассиваторы металла фирмы ADDAPT можно в компании «Руссо Индастриал», сделав запрос нашем на сайте.

  • О компании
  • Сотрудники
  • Новости
  • Галерея
  • О компании Dow Chemical
  • Архив
  • Клиентам
  • О компании
  • Статьи и презентации
  • Новости
  • Контакты

109377, г. Москва, Рязанский проспект, д.32, корп. 3, офис 418

3 Многоликая коррозия

Количество причин, по которым нержавеющая сталь начинает корродировать, кажется небольшим. Но на химическом уровне происходят куда более разнообразные процессы. Коррозия, оказывается, бывает разной природы. Рассмотрев основные виды, мы будем предупреждены обо всех слабых местах этого сплава. Самый частый и неожиданный способ испортить нержавейку – чистящие средства. Многие хозяйки не предполагают, что хлорсодержащая бытовая химия очень быстро разрушает защитную пленку на посуде из этого сплава. Так что следует иметь на вооружении специальное чистящее средство. Такая коррозия называется общей, потому что происходит по всей поверхности.

Посуда из нержавеющего сплава

Щелевой тип поражения сплава знаком тем, кто работает с конструкциями из этого материала. Если детали плотно соприкасаются, рано или поздно между ними начинается ржавление. Часто поражаются крепежи. Точечная или питтинговая коррозия возникает при механическом повреждении поверхности детали. Причина очевидна, сбитая пленка открывает доступ к незащищенной стали. Гальванические процессы вызывают одноименную коррозию. Для их возникновения нужна токопроводящая среда и разнородные металлы, одним из участников и будет нержавейка. Это очень частая причина порчи деталей в морской воде. Поэтому на конструкторов всегда ложится удвоенная ответственность, нужно исключить контакт нержавеющей стали с другими низколегированными сплавами.

Коррозия на поверхности детали

Суть и общее описание процедуры


Пассивирование металлов Даже нержавеющая сталь, не может сохранять свои свойства вечно. Есть негативные внешние факторы, которые способствуют постепенному ее окислению и разрушению.

Иногда процессы деструкции заходят настолько далеко, что деталь или изделие становится полностью непригодным для использования.

Пассивация стали – специальная процедура, позволяющая защитить ее от коррозии. Внутри любого металла содержится большое количество таких элементов, как марганец, ниобий, молибден, никель. Но основным веществом, которое используется в технологическом процессе, является хром.

Чтобы придать нержавеющей стали те или иные свойства, специалисты добавляют в ее состав разные элементы. Но защитить материал от коррозии способен хром. Свойства нержавеющего металла зависят от количественного соотношения представленного элемента в нем:


Влияние хрома на свойства нержавеющей стали

  • 12% – материал будет устойчивым только к губительному воздействию воздуха;
  • 17% – сталь не повреждается азотной кислотой;
  • 18% и более – деталь станет устойчивой к разрушительному влиянию более агрессивных веществ.

Но не только содержание определенных химических веществ увеличивает пассивность нержавеющей стали к коррозии. Защитная пленка на ее поверхности не должна быть повреждена. Лучше, если она имеет одинаковую толщину и химический состав.

Области пассивирования

Чтобы нержавеющая сталь не разрушалась длительное время, нужно обязательно пассивировать такие области:

  • конструкции из труб (чаще всего они обрабатываются при помощи сварки);
  • места, где присутствуют крепежи (тут детали поддаются механической обработке);
  • конструкции, контактирующие с соленой водой (их разрушение происходит быстрее).


Пассивация труб и трубопроводов

Однако, такая процедура не всегда необходима. Если на изделие не будут воздействовать слишком агрессивные внешние факторы, то нет надобности в проведении такой обработки. Иногда процедура может сделать только хуже.

Свойства металла после обработки

Химическое пассивирование, или другие его способы, обеспечивают такие свойства стали:


Химическое пассивирование

При добавлении хрома: 12–14% – нержавейка может использоваться в условиях, где наблюдается повышенное количество водяного пара, есть возможность попадания на поверхность изделия уксусной или азотной кислоты.

При добавлении 16–18% указанного элемента обеспечивает устойчивость к коррозии при температуре до 900 градусов, к парам серы, мылу, растворам органических кислот.

При использовании марганца, хрома и никеля. Нержавейка становится неуязвимой для уксусной и молочной кислот. Это позволяет использовать ее в пищевой промышленности.

При добавлении молибдена. На детали не смогут подействовать серная и уксусная кислоты.
Другие добавки позволяют избежать коррозии нержавейки в малоагрессивной среде, а также при нагрузках растяжения

Важно помнить, что она способна разрушаться не только извне, но и изнутри.


Требования к химическому покрытию

Определение слова «Пассивирование» по БСЭ:

Пассивирование — пассивация металлов, переход поверхности металла в пассивное состояние, при котором резко замедляется Коррозия. П. вызывается поверхностным окислением металлов. Практическое значение П. исключительно велико, так как все конструкционные металлы без их самопроизвольного П. подвергались бы быстрой коррозии не только в агрессивных химических средах, но и во влажной земной атмосфере или пресной воде.Если погрузить металл, склонный к П., в неокислительный водный раствор электролита, подключить его к источнику тока, позволяющему задавать любые значения потенциала (так называемому потенциостату) и записать зависимость плотности тока растворения металла от задаваемого потенциала, то получится поляризационная кривая, близкая к представленной на рисунке. Кривая показывает, что П. металла начинается при потенциале пассивации Еп и критической плотности тока iп. С увеличением потенциала от Еп до Епп (потенциала полной пассивации) плотность тока не увеличивается, а снижается в результате П. иногда в 104-105 раз (до iпп) и далее сохраняется почти без изменений вплоть до потенциала перепассивации Епер.Наблюдаемое затем новое ускорение растворения связывают с перепассивацией, или транспассивным состоянием. Интервал от Епп до Епер называют областью пассивного состояния. В присутствии ионов Cl&minus., Br&minus., I&minus. местное сильное растворение(«питтинг») некоторых пассивных металлов начинается ещё при потенциале Епит пер.Все перечисленные величины являются важными характеристиками поведения металлов и при коррозии под действием окислителей. Так, металл коррелирует с минимальной скоростью (эквивалентной плотности тока в полностью пассивном состоянии iпп) тогда, когда Окислительно-восстановительный потенциал среды Ео-в удовлетворяет условию Епп о-в пер. Для того чтобы П. было самопроизвольным (при отсутствии внешних источников тока), скорость восстановления окислителя при Еп должна быть не меньше iп. Например, разбавленные растворы азотной кислоты в отношении хрома удовлетворяют обоим этим условиям, а в отношении железа -только первому.Соответственно Cr в них пассивируется сам, a Fe только может сохранять пассивное состояние, созданное каким-то способом ранее. Поскольку для Cr iп и iпп в сотни раз меньше, чем для Fe, а Епп и Епер — на 0,4-0,5 в отрицательнее, Cr несравненно устойчивее Fe в слабо окислительных средах, но вследствие перепассивации значительно сильнее разрушается в сильных окислителях (дымящей азотной кислоте, кислотах с добавками перманганатов, хроматов и др.). Сильное повышение концентрации кислоты или щёлочи обычно ведёт к увеличению iп и iпп, и в таких средах устойчивы лишь некоторые металлы. Среди них наибольшее значение имеют Cr, Ni и богатые ими сплавы, Ti, Zr. В нейтральных средах к П. в той или иной мере склонна большая часть металлов. В неводных растворах П. часто оказывается возможным только в присутствии влаги. В теории П. важная роль отводится как адсорбции кислорода, так и образованию окисных слоев.Перепассивация вызывается образованием высших кислородных соединений металла, которые либо растворяются целиком, давая анионы (CrO42-), либо отдают в раствор свои катионы, распадаясь с выделением кислорода (NiO2). Источниками кислорода, участвующего в образовании пассивирующих слоев, могут быть некоторые окислители (H2O2, HNO3). П. могут способствовать анионы, дающие с металлом труднорастворимые соли или смешанные окислы. Однако наиболее универсальным источником пассивирующего кислорода является химически или электрохимически взаимодействующая с металлом вода.В технике термин «П.» означает также специальную химическую или электрохимическую обработку металла в подходящем растворителе, повышающую стойкость его исходного пассивного состояния (П. алюминиевой посуды в 30%-ной HNO3, цинковых покрытий в хроматных растворах и т.д.). Вещества, главным образом окислители, с помощью которых производится П., называются пассиваторами.Лит.: Томашов Н. Д., Чернова Г. П., Пассивность и защита металлов от коррозии, М., 1965. Скорчеллетти В. В., Теоретические основы коррозии металлов, Л., 1973. Новаковский В. М., Обоснование и начальные элементы электрохимической теории растворения окислов и пассивных металлов, в сборнике: Коррозия и защита от коррозии, т. 2, М., 1973.В. М. Новаковский.Рис. к ст. Пассивирование.

Этапы химического пассивирования

В процессе формирования однородной инертной пленки на поверхности изделий из нержавейки важно учитывать особенности состава стали и степень повреждения защитного покрытия. Химическое пассивирование сегодня является неотъемлемой частью в работе с нержавеющими материалами

Это позволяет продлить срок их службы, избавиться от ржавчины и повреждений, а также предотвратить образование коррозии. Во время проведения работ по пассивации следует соблюдать поочередность этапов:

Сначала осуществляется очистка материалов от загрязнений. Удаляются жирные пятна, ржавчина и прочие налеты. При технологии травления химическими кислотами изделие погружают в ванну со смесью соляной кислоты и серной. При температуре от 60 до 80 градусов сталь здесь выдерживается в течение 20-40 минут. Если применяется метод травления готовыми смесями кислот, то для очистки используются специальные концентрированные составы (пасты, гели, спреи), которые наносятся на поверхность стали ручным способом. Химикат оставляют ориентировочно на 30 минут. Затем проводится тщательная промывка изделий водой. Начинается процесс пассивации. В первом случае сталь погружают в кислотную ванну. Во втором – наносят гели, пасты, спреи и прочие готовые химические составы на поверхность изделия. В случае с готовыми средствами предусмотрен еще один этап – обработка пассиватором. Это позволяет обеспечить принудительное образование оксидной пленки на нержавеющей стали. Последний этап состоит из тщательной промывки изделия.

Состав нержавеющей стали и марка играют далеко не последнюю роль во внешнем виде изделия после химического пассивирования. Некоторые виды имеют темный цвет, другие же более светлый. Но независимо от этого данный способ обработки стали имеет целый перечень преимуществ:

улучшается сопротивление к образованию коррозии; происходит равномерное сглаживание поверхности изделия; удаляются заусенцы, царапины, вмятины; срок службы изделий значительно увеличивается.

Химическое пассивирование нержавейки

Несмотря на то, что нержавеющая сталь как в своей массе, так и в поверхностном слое уже инактивирована в смысле воздействия на неё неблагоприятных условий среды, иногда коррозия находит у этой стали слабые места.

Сталью железо делают легирующие добавки. А основной такой добавкой, делающей сталь нержавеющей, является хром. Но при его 12% в составе сплава он защитит сталь только от атмосферных воздействий. При 17% выдержит уже обработку азотной кислотой, одной из самых агрессивных кислот.

Дело ещё и в состоянии поверхности нержавеющего материала. И если поверхностный слой нарушен, если на нём есть глубокие царапины, задиры, микроскопические ударные кратеры, то даже легированный металл будет подвержен коррозии.

А иногда достаточно сварного шва на поверхности. И пусть сварка тоже выполняется специальными электродами и в специальном режиме, образующееся в шве чистое железо станет центром коррозии, которая примет цепной характер. Да что сварка? Даже если резать или пилить рядом с нержавеющей конструкцией обычную, нелегированную сталь, то опилки, стружки и любой формы частички от неё, попавшие на нержавейку, тоже быстро станут такими центрами.

Катодный способ защиты

Вам будет интересно:Свойства и состав силикатного кирпича

Это вид электрохимической антикоррозийной изоляции, при которой используется техника наложения катодного тока. Но и данный способ может быть реализован разными методами. Например, в некоторых случаях на производствах достаточный сдвиг потенциалов обеспечивается за счет подключения детали к внешнему источнику тока в качестве катода. Анодом же выступает инертный вспомогательный электрод. Таким методом выполняется пассивация швов после сварки, защищаются металлические платформы буровых конструкций и подземные трубопроводы. К преимуществам катодного способа пассивации относят эффективность в подавлении коррозийных процессов разного типа.

Помимо общего поражения ржавчиной предотвращается питтинговая и межкристаллитная коррозия. Практикуются и такие способы катодного электрохимического воздействия, как протекторный и гальванический. Главной особенностью этих подходов можно назвать применение более электроотрицательного металла в качестве поляризатора. Данный элемент в контакте с защищаемым изделием и выполняет функцию анода, разрушаясь в ходе операции. Подобные методы обычно используются при изоляции небольших конструкций, частей зданий и сооружений.

Пассивация литиевых источников тока

Под пассивацией понимается процесс образования на литиевом аноде тонкой плёнки с высоким сопротивлением. Эта плёнка формируется в результате взаимодействия электролита с литиевым анодом. Данная плёнка замедляет процесс разряда и разложения лития, уменьшает скорость саморазряда и продлевает срок хранения аккумулятора. Негативным последствием пассивации является задержка напряжения. При приложении к ячейке нагрузки высокое сопротивление пассивационной плёнки вызывает резкое падение (задержку) напряжения. Процесс разряда постепенно разрушает плёнку, тем самым, снижая внутреннее сопротивление ячейки. Это приводит к увеличению напряжения ячейки, которое должно оставаться стабильным во время разряда при неизменных прочих условиях протекания процесса. При увеличении нагрузки после стабилизации напряжения оно может снова упасть до того момента, когда пассивационная плёнка вновь не будет полностью удалена. Если убрать или уменьшить нагрузку пассивационная плёнка восстановится и станет влияющим фактором при следующем использовании. Существует несколько факторов, влияющих на степень пассивации и на длину и глубину задержки напряжения:

  • нагрузочная способность ячейки. При высоком токе нагрузки задержка увеличивается, при малом — почти не ощутима;
  • химический состав. Даже незначительные изменения химического состава влияют на пассивацию;
  • длительность хранения. Обычно длительность хранения прямо пропорционально степени пассивации. Поэтому старые ячейки более подвержены эффекту задержки напряжения;
  • температура хранения. Слишком высокая температура хранения увеличивает степень пассивации. Особенно серьёзные проблемы могут возникнуть при хранении ячеек в непроветриваемом помещении при высокой температуре. Рекомендуется хранить ячейки в помещениях с контролем климата;
  • температура разряда. Подобно хранению при высокой температуре разряд при низкой температуре способствует пассивации;
  • условия предыдущего разряда. Частичный разряд, а затем удаление нагрузки увеличивают степень пассивации по сравнению с новой ячейкой. Поэтому при вторичном использовании задержка напряжения бывает более ярко выраженной.

Обычно задержка напряжения, вызванная пассивацией, не доставляет проблем пользователям литиевых ячеек. Однако, эффект пассивации необходимо учитывать.

Применение пассивации

  • Пассивация используется для металлических деталей под покраску. Она не только защищает от коррозии, но и обезжиривает изделия. Применяется в сфере машиностроения.
  • Пассивация паровых турбин. Но зачем нужна пассивация нержавеющей стали, ведь она и так не поржавеет? Оказывается, если сплав находится в непрекращающемся контакте с агрессивной средой, то он может разрушиться. В качестве примера выступает сварной шов. Иногда на нём присутствуют частички железа. И тогда подвергается коррозии даже нержавейка.
  • Стоматологическая область. Обрабатываются нижняя часть имплантов — винты, которые вмонтируются в челюсть. Пассивация используется для исключения разрушения импланта в челюстной кости.
  • Химическая пассивация часто проводится с декоративной целью. При кратковременной обработке на поверхности появляется радужная плёнка. Яркие предметы использования — краны, дверные ручки.
  • Пассивация украшений из бижутерии используется во избежание аллергических реакций.

Химическая пассивация заметно продлевает срок службы изделий из металла и заслуживает широкого применения в самых разнообразных областях.

Виды пассивирования

По методу нанесения покрытия пассивирование бывает двух видов: химическое и электрохимическое. Кроме того, разновидности этой технологии классифицируют по типу химического элемента, из соединений которого образуется поверхностная пленка (хроматирование, никелирование, молибденирование и другие). Кроме того, выделяют естественную пассивацию — процесс образования защитного слоя у ряда металлов и сплавов под воздействием атмосферного и растворенного в воде кислорода.

Химическое

Химическое пассивирование происходит в результате притяжения отрицательных ионов растворенных в воде солей к поверхности металла, атомы которого имеют положительный потенциал. Для этого металлические изделия, предварительно очищенные и обезжиренные, помещаются в специальную ванну, заполненную соответствующим раствором. Основным компонентом в таком электролите является соль металла, образующего защитную пленку на поверхности изделия. Химическая пассивация также может выполняться по месту установки изделия. В этом случае все процессы, начиная от очистки и заканчивая пассивацией, нейтрализацией и обмывкой, выполняются вручную с помощью специального оборудования.

Электрохимическое

Электрохимическая пассивация основана на принципах гальванотехники. В этом случае металлические заготовки также помещаются в ванну с электролитом, но осаживание пассивирующего слоя происходит не в пассивном режиме, а под воздействием тока, протекающего через электролитический раствор. При такой пассивации положительный потенциал подается на заготовку, а отрицательный — на корпус ванны. При использовании электрохимического способа защитная пленка образуется быстрее и получается более ровной. Но такая технология дороже химической пассивации, т. к. в ней применяется более сложное оборудование и происходит расход электроэнергии.

Принцип электрохимической антикоррозийной защиты

Вам будет интересно:Что тяжелее: трамвай или танк? Что тяжелее: трамвай или танк Т-34?

Ключевым фактором электрохимической пассивации является воздействие внешнего тока на целевую поверхность. В момент прохождения катодного тока через корродирующую металлическую структуру его потенциал изменяется в отрицательную сторону, что меняет и характер процесса ионизации молекул заготовки. В условиях анодного воздействия со стороны внешнего поляризатора (характерно для кислотных сред) может потребоваться увеличение тока. Это необходимо для подавления поляризатора и последующего достижения полной антикоррозийной защиты. Однако при усиленной пассивации поверхности за счет внешнего тока увеличивается выделение водорода, что приводит к наводороживанию металла. В результате начинается процесс растворения водорода в металлической структуре с последующим ухудшением физических свойств заготовки.

Зачем это необходимо?

Лист нержавеющей стали имеет на своей поверхности очень тонкую оксидную пленку. Именно она и препятствует образованию ржавчины на деталях, крепежах, метизах, изготовленных из этого материала. Но малейшее нарушение целостности этого покрытия приводит к тому, что основные антикоррозийные свойства нержавейки утрачиваются. Причины повреждения оксидной пленки могут быть самыми разными:

при контакте материала с хлором; при взаимодействии стали с морской водой; в случае повреждений механическим или физическим путем, в том числе при царапинах и незначительных вмятинах.

Поэтому важно соблюдать условия эксплуатации, которые регламентированы заводами-производителями тех или иных изделий (столовых приборов, крепежей, метизов, рабочих инструментов, цельных листов и проч.). Запрещается использовать моющие средства, имеющие в своем содержании хлор и иные агрессивные химические вещества

Но самый большой ущерб оксидной пленке наносит сварка. Особенно это губительно в случае сварки труб. В такой ситуации защитная поверхность разрушается вдоль всего шва. Для восстановления поверхностей и защиты изделий от образования ржавчины применяется пассивация стали. Но здесь еще не менее важную роль играет и состав нержавейки.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации