Андрей Смирнов
Время чтения: ~14 мин.
Просмотров: 0

При каких температурах плавятся различные металлы и неметаллы?

История элемента

Этот элемент был открыт в 1854 году Халюсом Пелегрином. Однако его использование началось задолго до этой даты на Ближнем Востоке и Балканах около 2000 лет до нашей эры. В ту эпоху была открыта бронза (сплав олова и меди), которая дала название Бронзовому Веку. Производили из бронзы оружие и орудия труда, которые были более эффективны, чем камень и кость.

В античное время производство бронзы привело к развитию торговли между различными странами. Также существуют упоминания об этом металле в Ветхом Завете. Так, в Месопотамии делали бронзовое оружие, а в Древнем Риме покрывали оловом внутреннюю поверхность медных сосудов для повышения их коррозионной стойкости.

Температура плавления алюминия

Получение алюминиевого расплава, как и многих других материалов, происходит после того, как к исходному металлу подвели тепловую энергию. Она может быть подведена как непосредственно в него, так и снаружи.

Температура плавления алюминия напрямую зависит от уровня его чистоты:

    1. Сверхчистый алюминий плавится при температуре 660, 3°C.
    2. При количестве алюминия 99,5% температура плавления составляет 657°C.
    3. При содержании этого металла в 99% расплав можно получить при 643°C.

Алюминиевый сплав может включать в свой состав различные вещества, в том числе и легирующие. Их наличие приводит к снижению температуры плавления. Например, при наличии большого количества кремния, температура может понизиться до 500°C. На самом деле понятие температуры плавления относят к чистым металлам. Сплавы не обладают какой-то постоянной температурой плавления. Этот процесс происходит в определенном диапазоне нагрева.

Первая температура обозначает ту точку, в которой начинается плавление алюминия, а вторая, показывает, при какой температуре, сплав будет окончательно расплавлен. В промежутке между ними сплав будет находиться в кашеобразном состоянии.

Галлий (26,79°C)


А вот серебристый металл галлий (Gallium — ещё до открытия элемента Д.И. Менделеев заранее оставил ему в таблице клеточку № 31) встречается гораздо чаще и нередко применяется просто для забав. Плавится он почти как цезий, при 26,79°C, но в остальном разительно отличается от своего «нервного» братца.

Внешне и по механическим свойствам галлий очень похож на алюминий. Лёгок, теплопроводен, в чистом виде довольно хрупок. Мгновенно образующаяся на воздухе плотная плёнка окислов так же хорошо защищает его от разрушения.

В чистом виде галлий практически не находит применения. А вот его соли и, особенно, легкоплавкие сплавы нашли широчайшее применение в ядерной физике, радиоэлектронике, измерительной технике.

Где встречаются алмазы в земной коре?

Эти минералы чрезвычайно редкие. Впрочем, промышленные месторождения сегодня разрабатываются практически на всех континентах земного шара. Исключением является лишь Антарктида.

До средины 19 века считалось, что минералы формируются в речных отложениях. Позже были открыты первые алмазоносные полости в каменистой горной почве на глубине в несколько сотен метров.

Согласно данным ученых, возраст некоторых алмазов составляет от 100 млн до 2,5 млрд лет. Исследователям удалось раздобыть более «старые» минералы неземного происхождения. Последние занесены на планету вместе с метеоритами, которые образовались в космическом пространстве еще до формирования Солнечной системы.

Способы прокаливания алюминиевой сковороды

Способы придуманы и применяются людьми очень давно, когда еще не было антипригарных покрытий. Цель процедуры по подготовке к первому использованию – закупоривание пор и создание своеобразной защитной пленки. Дело в том, что алюминий имеет микропоры, поэтому и возникает пригорание. Прокаливание помогает их заполнить до появления момента прилипания готовящихся блюд ко дну.

«Бабушкин» метод с помощью соли

Наиболее распространенный и простой вариант подготовки к первому использованию:

  1. Чистую, насухо вытертую сковороду поставьте на плиту и сделайте максимально слабый огонь.
  2. Дно засыпьте крупной поваренной солью слоем приблизительно 1 см.
  3. Подогревайте 20 минут, затем дайте полностью остыть.
  4. Освободите дно от соли и протрите мягкой тряпочкой, пропитанной рафинированным растительным маслом.
  5. Пользуйтесь через 2-3 дня.

Вариант с водой без соли

Прокипятите воду в сковороде, затем слейте. Оставьте высыхать естественным путем, не вытирая. Нанесите равномерно на поверхность растительное масло и не пользуйтесь обработанной алюминиевой посудой несколько дней.

Прокаливание растительным маслом

Не менее распространенный метод подготовки новой алюминиевой сковороды к использованию заключается в следующем:

  1. Налейте растительное масло в таком количестве, чтобы дно было полностью покрыто.
  2. На медленном огне подогревайте его в среднем 20-25 минут.
  3. После остывания ополосните чистой водой без применения химических средств.
  4. Пользуйтесь посудой спустя время (1-2 дня).

Перед работой установите вытяжку на максимальный режим, откройте окна, так как во время разогревания появится характерный запах. Обязательно используйте рафинированное масло, иначе будет очень много дыма.

Комбинированный метод

Этот способ совмещает два предыдущих, в которых используется масло и соль. Хороший эффект получается, если взять два ингредиента одновременно. Для этого на этапе начала подогревания масла добавьте в него столовую ложку соли. Спустя 20 минут прекратите нагрев, дайте остыть, ополосните.

Упрощенный способ

Самый экономный по времени вариант подготовки алюминиевой сковородки к первой готовке, так как не нужно стоять около плиты. Суть заключается в прокаливании в духовке:

  1. Чистую сковородку предварительно смажьте с обеих сторон рафинированным маслом.
  2. Поместите ее вверх дном в предварительно нагретую на 180 градусов духовку.
  3. Спустя один час выключите духовку и оставьте там сковороду остывать.
  4. Через несколько дней начинайте пользоваться новой антипригарной посудой.

Температура — плавление — латунь

Температура плавления латуни зависит от содержания в ней меди и цинка. Удельный вес равен около 8 5; электрохимический эквивалент складывается из электрохимических эквивалентов меди и цинка в соответствии с их количественным содержанием в осадке.

Температура плавления латуни находится в пределах 800 — 900 С, в зависимости от ее состава.

Добавка олова несколько понижает температуру плавления латуни и увеличивает жидкотекучесть ее. До-бавка кремния уменьшает выгорание цинка, так как при расплавлении латуни кремний прежде всего окисляется сам и, соединяясь с флюсом, образует плотную пленку боро-силикатов, защищающую цинк от испарения. В результате этого припои на медной основе, содержащие, кроме цинка, небольшие количества олова и кремния, обладают лучшими технологическими свойствами и обеспечивают более высокую плотность и герметичность шва.

Добавка олова несколько понижает температуру плавления латуни и увеличивает ее жидкотекучесть и растекаемость. Добавка кремния уменьшает выгорание цинка, так как при расплавлении латуни кремний прежде всего окисляется сам и, соединяясь с флюсом, образует плотную пленку боросиликатов, защищающую цинк от испарения.

Чем больше цинка в сплаве, тем ниже температура плавления латуни и тем меньшая требуется мощность пламени горелки. Теплопроводность латуни ниже, чем меди, и уменьшается с увеличением содержания цинка. Это делается с целью предупреждения перегрева сварочной ванны и усиленного испарения цинка, которое происходит при температуре 907 С. Пары цинка, соединяясь с кислородом воздуха, образуют окись цинка, которая в виде белого налета осаждается на поверхность свариваемой детали.

Латунь представляет собой сплав меди с цинком; температура плавления латуни 800 — 1000 С.

Подготовленная поверхность чугунной детали должна быть шероховатой и нагретой до 850 — 930 С, на 50 — 80 выше температуры плавления латуни. Пруток латуни должен быть покрыт слоем флюса из 70 % буры, 10 % борной кислоты, 20 % пова-релной соли, лл4о из буры и борной кислоты поровну. Применяется и одна бура.

Латунь является сплавом меди с цинком. Температура плавления латуни колеблется от 800 до 950 С и зависит от количества цинка. Латунь широко применяется в технике в виде листового и сортового металла, а также литья.

Химический состав и механические свойства меди различных марок.

Латунь представляет собой сплав меди с цинком. Температура плавления латуни колеблется от 800 до 950 и зависит от количества в ней цинка.

Латунь представляет собой сплав меди с цинком золотисто-желтого цвета. Температура плавления латуни колеблется от 800 до 950 и зависит от количества в ней цинка: чем цинка больше, тем температура плавления латуни ниже.

Латунь представляет собой сплав меди с цинком золотисто-желтого цвета. Температура плавления латуни в зависимости от состава достигает 880 — 950 С. С увеличением содержания цинка температура плавления понижается. Латунь достаточно хорошо сваривается и прокатывается. Изготовляется и применяется она обычно в виде листов, прутков, трубок и проволоки. Широкое применение латуни обусловливается ее меньшей стоимостью по сравнению с медью.

Пайка латунным припоем производится при меньшей температуре нагрева ( 650 — 750 С), чем пайка чугуном. Снижение температуры плавления латуни достигается за счет применения флюсов ФПСЧ-1 или ФПСЧ-2.

Пайка латунным припоем производится при меньшей температуре нагрева ( 650 — 750 С), чем пайка чугуном. Снижение температуры плавления латуни достигается за счет применения флюсов ФПСЧ-1 или ФПСЧ-2, которые плавятся при указанных температурах, частично растворяют припой, смачивают поверхность чугуна и образуют низкотемпературную металлическую связь на границе чугун — латунь.

Когда от паяного соединения требуются высокие прочность и относительное удлинение, в медно-цинковые припои вводят повышенное количество олова, кремния, никеля и марганца. Небольшие добавки олова понижают температуру плавления латуни, повышают коррозионную стойкость в морской воде и увеличивают жидкотекучесть и расте-каемость припоя. Применение латуней с оловом в качестве припоев ограничивается их недостаточной пластичностью.

Таблица характеристик

Металлы и сплавы — непременная основа для ковки, литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота, ограды из чугуна, ножи из стали или браслеты из меди), для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.

Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.

Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

  1. алюминий — 660 °C;
  2. температура плавления меди — 1083 °C;
  3. температура плавления золота — 1063 °C;
  4. серебро — 960 °C;
  5. олово — 232 °C. Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов;
  6. свинец — 327 °C;
  7. температура плавления железо — 1539 °C;
  8. температура плавления стали (сплав железа и углерода) — от 1300 °C до 1500 °C. Она колеблется в зависимости от насыщенности стали компонентами;
  9. температура плавления чугуна (также сплав железа и углерода) — от 1100 °C до 1300 °C;
  10. ртуть — -38,9 °C.

Как понятно из этой части таблицы, самый легкоплавкий металл — ртуть, которая при плюсовых температурах уже находится в жидком состоянии.

Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия — 2519 °C, у железа — 2900 °C, у меди — 2580 °C, у ртути — 356,73 °C.

У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.

Максимальная температура кипения у металлов — у рения — 5596 °C. Наибольшая температура кипения — у наиболее тугоплавящихся материалов.

Бывают таблицы, в которых также указана плотность металлов. Самым лёгким металлом является литий, самым тяжёлым — осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре. К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа — очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.

Ещё один показатель, встречающийся в таблицах — это теплопроводность металлов. Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл — серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.

Цезий (28,5°C)


Очень мягкий серебристый металл буквально плавится в руках. При температуре 28,5°C цезий (Caesium) становится жидкостью и буквально утекает между пальцев. Но не вздумайте провести такой опыт! Из всех щелочных металлов элемент №55 самый химически активный (уступая лишь францию).

На открытом воздухе цезий моментально окисляется, образуя яркое пламя. А при попадании в воду просто взрывается. Цезий ухитряется поджечь даже лёд! Более того, образовавшийся при реакции с водой гидроксид цезия разъедает стекло — и потихоньку грызёт сосуды из золота и даже платины.

А вот в электронике такая активность цезия позволяет делать очень чувствительные фотоэлементы и часы поистине космической точности.

Температура плавления металлов

Металлы и неметаллы

Любой кусок металла, например, алюминия, содержит миллионы отдельных кристаллов, которые называются зернами. Каждое зерно имеет свою уникальную ориентацию атомной решетки, но все вместе зерна ориентированы внутри этого куска случайным образом. Такая структура называется поликристаллической.

Аморфные материалы, например, стекло,  отличаются от кристаллических материалов, например, алюминия, по двум важным отличиям, которые связаны друг с другом:

  • отсутствие дальнего порядка молекулярной структуры
  • различия в характере плавления и термического расширения.

Различие молекулярной структуры можно видеть на рисунке 1. Слева показана плотно упакованная и упорядоченная кристаллическая структура. Аморфный материал показан справа: менее плотная структура со случайным расположением атомов.

Рисунок 1 – Структура кристаллических (а) и аморфных (б)  материалов.
Кристаллическая структура: упорядоченная, повторяющаяся и плотная,
аморфная структура – более свободно упакованная
с беспорядочным расположением атомов.

Плавление металлов

Это различие в структуре проявляется при плавлении металлов, в том числе, плавлении алюминия различной чистоты и его сплавов. Менее плотно упакованные атомы дают увеличение объема (снижение плотности) по сравнению с тем же металлом в твердом кристаллическом состоянии.

Металлы при плавлении испытывают увеличение объема. У чистых металлов это объемное изменение происходит весьма резко и при постоянной температуре – температуре плавления, как это показано на рисунке 2. Это изменение представляет собой разрыв между наклонными линиями по обе стороны от точки плавления. Обе эти наклонные линии характеризуют температурное расширение металла, которое обычно является различным в жидком и твердом состоянии.

Рисунок 2 – Характерное изменение объема чистого металла
по сравнению с изменением объема аморфного материала :
Tg – температура стеклования (перехода жидкого состояния в твердое);
Tm – температура плавления

Теплота плавления

С этим резким увеличением объема при переходе металла из твердого состояния в жидкое  связано определенное количество тепла, которое называется скрытой теплотой плавления. Это тепло заставляет атомы терять плотную и упорядоченное кристаллическую структуру. Этот процесс является обратимым, он работает в обоих направлениях – и при нагреве, и при охлаждении.

Равновесная температура плавления

Как было показано выше, чистые кристаллические вещества, например, чистые металлы, имеют характерную температуру плавления, которую часто называют «точкой плавления».  При этой температуре это чистое твердое кристаллическое вещество плавится и становится жидкостью. Переход между твердым и жидким состоянием для малых образцов чистых металлов настолько мал, что может измеряться с точностью 0,1 ºС.

Жидкости имеют характерную температуру, при которой они превращаются в твердое вещество. Эту температуру называют температурой затвердевания или точкой затвердевания. Теоретически – в равновесных условиях – равновесная температура плавления твердого вещества является той же самой, что и равновесная температура его затвердевания. На практике можно наблюдать небольшие различия между этими величинами (рисунок 3).

Рисунок 3 –  Кривые охлаждения и нагрева чистого металла.
Видны явления переохлаждения при охлаждении и перегрева при нагреве.
В начале затвердевания наблюдается впадина на кривой охлаждения,
что объясняется замедленным началом кристаллизации

Температуры ликвидус и солидус

  • Температура начала плавления называется температурой солидус (или точкой солидус)
  • Температура окончания плавления – температурой ликвидус (или точкой ликвидус).

«Солидус» означает, понятно, твердый, а «ликвидус» – жидкий: при температуре солидуса весь сплав еще твердый, а при температуре ликвидуса – весь уже жидкий.

При затвердевании этого сплава из жидкого состояния температура начала кристаллизации (затвердевания) будет та же температурой ликвидус, а окончания кристаллизации – та же температура солидус. При температуре сплава между его температурами солидуса и ликвидуса он находится в полужидком-полутвердом, кашеобразном состоянии.

Выбор формы для литья

При выборе формы для отливки алюминия домашний мастер должен понимать, а для какой цели он обрабатывает алюминий. Если будущая отливка будет предназначена для использования в качестве припоя, то использовать, какие-то специальные формы, нет необходимости. Для этого можно использовать металлический лист, на котором можно остудить расплавленный металл.

Но если возникает необходимость получения даже простой детали, то мастер должен определиться с типом формы для литья.

Форму можно изготовить из гипса. Для этого, гипс в жидком состоянии заливают в обработанную маслом форму. После того, как начнет застывать, в него устанавливают литейную модель. Для того, чтобы в форму можно было залить расплавленный металл необходимо сформировать литник. Для этого в форму устанавливают цилиндрическую деталь. Формы бывают разъемные и нет. Процесс изготовления разъемной формы усложняется тем, что модель будет находиться в двух полуформах. После застывания их разделяют, удаляют модель и соединяют снова. Форма готова к работе.

Кокиль для литья алюминия

Для получения качественных отливок целесообразно использовать металлические формы (кокили), но изготавливать их целесообразно только в заводских условиях.

Состав и структура алюминия

Алюминий – это самый распространенный в земной коре металл. Его относят к легким металлам. Он обладает небольшой плотностью и массой. Кроме того, у него довольно низкая температура плавления. В то же время он обладает высокой пластичностью и показывает хорошие тепло- и электропроводные характеристики.

Предел прочности чистого алюминия составляет всего 90 МПа. Но, если в расплав добавить некоторые вещества, например, медь и ряд других, то предел прочности резко вырастает до 700 МПа. Такого же результат можно достичь, применяя термическую обработку.

Алюминий, обладающий предельно высокой чистотой – 99,99% производят для использования в лабораторных целях. Для применения в промышленности применяют технически чистый алюминий. При получении алюминиевых сплавов применяют такие добавки, как – железо и кремний. Они не растворяются в расплаве алюминия, а из добавка снижает пластичность основного материала, но в то же время повышает его прочность.

Внешний вид простого вещества

Проведенные расчеты показывают, что плотность чистого металла составляет 2,7 кг на метр кубический.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации