Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 1

Гост 33843-2016 (iso 15310:1999) композиты полимерные. метод определения модуля сдвига в плоскости методом кручения

Определение

Элемент g группы G называется элементом кручения, если он имеет конечный порядок, то есть существует натуральное n, такое что gn = e, где e обозначат нейтральный элемент группы. Группа называется периодической (или группой кручения), если все её элементы являются элементами кручения, и группой без кручения, если единственный элемент кручения — нейтральный. Известно, что любая абелева группа является модулем над кольцом целых чисел; в частности, определение элемента кручения для неё можно переформулировать так: существует ненулевое целое число, такое что умножение на это число переводит данный элемент в ноль. Это мотивирует следующее определение:

Элемент m модуля M над кольцом R называется элементом кручения, если существует ненулевой регулярный элемент r кольца R (то есть элемент, не являющийся левым или правым делителем нуля), аннулирующий m, то есть такой, что rm = 0. В случае работы с целостным кольцом предположение регулярности можно отбросить. Аналогичным образом определяются модуль кручения и модуль без кручения. В случае, если кольцо R коммутативно, можество всех элементов кручения модуля M образует подмодуль, называемый подмодулем кручения (в частности, для модуля над Z он называется подгруппой кручения).

Более общо, пусть M — модуль над кольцом R и S — мультипликативно замкнутая система кольца. Элемент m модуля M называется элементом S-кручения, если существует элемент мультипликативной системы, аннулирующий m. В частности, множество регулярных элементов кольца является наибольшей мультипликативной системой.

Определение полевого модуля деформации согласно ГОСТ 20276-2012:

1. Методом испытания штампом в соответствии с разделом 5 для определения модуля деформации дисперсных грунтов: минеральных, органо-минеральных и органических грунтов.

Определяют по результатам нагружения грунта вертикальной нагрузкой в забое горной выработки с помощью штампа.

Модуль деформации E вычисляется по п.5.5.2:

E  = (1-ν2) · Kp· K1· D· Δp / ΔS

где ν  — коэффициент Пуассона;

K— коэффициент, принимаемый в зависимости от заглубления штампа h/D  ( h — глубина расположения штампа относительно дневной поверхности грунта, см;  D — диаметр штампа, см);

K1 — коэффициент, принимаемый для жесткого круглого штампа равным 0,79;

Δp — приращение давления на штамп;

ΔS — приращение осадки штампа, соответствующее Δp.

2. Методом испытания радиальным прессиометром в соответствии с разделом 5 для определения модуля деформации дисперсных грунтов: песков, глинистых, органо-минеральных и органических грунтов..

В состав установки для испытания грунта радиальным прессиометром должны входить:

  • зонд, снабженный эластичной оболочкой с каналами для передачи давления рабочей жидкости (воздуха) под оболочку;
  • устройство для создания и измерения давления в камере зонда;
  • устройство для измерения перемещений оболочки зонда.

Модуль деформации E вычисляется по п.5.5.2:

E  =  Kr· ro · Δp / Δr

где Kr — корректирующий коэффициент;

ro — начальный радиус скважины;

Δp — приращение давления на стенку скважины;

ΔS — приращение перемещения стенки скважины (по радиусу).

Контрольные вопросы

Выведите формулу (2).

При определении модуля сдвига статическим способом зависимость рекомендуется снять как при возрастающих, так и при убывающих значениях М. Почему? Совпадут ли оба полученные таким образом результаты, если трение в осях блоков Б будет значительным?

При определении модуля сдвига динамическим способом указывалось, что период колебаний не зависит от амплитуды только при сравнительно небольших значениях последней. Объясните качественно, как будет меняться период при возрастании амплитуды?

Какому методу определения G вы отдадите предпочтение на практике, статическому или динамическому?

Как при динамическом определении G измерить величины L1 и L2? Имеет ли смысл выбирать их малыми?

Как оценить ошибку измерений по графику зависимости Т 2 от L 2 ?

Допускаемое механическое напряжение в некоторых материалах при растяжении

Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия. По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга.

Испытание на растяжение

Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны.

Значения σраст в МПа:

Материалыσраст 
Бор57000,083
Графит23900,023
Сапфир14950,030
Стальная проволока4150,01
Стекловолокно3500,034
Конструкционная сталь600,003
Нейлон480,0025

Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса.

Запасы прочности, закладываемые в ответственные конструкции, также многократны.

Кручение и локализация

Пусть R — область целостности с полем частных Q, а M — R-модуль. Тогда можно рассмотреть Q-модуль (то есть векторное пространство)

MQ=M⊗RQ.{\displaystyle M_{Q}=M\otimes _{R}Q.}

Существует естественный гомоморфизм a↦a⊗1{\displaystyle a\mapsto a\otimes 1} из абелевой группы M в абелеву группу MQ, и ядро этого гомоморфизма — в точности подмодуль кручения. Аналогично, для локализации кольца R по мультипликативной системе S

MS=M⊗RRS,{\displaystyle M_{S}=M\otimes _{R}R_{S},}

ядро естественного гомоморфизма — это в точности элементы S-кручения. Таким образом, подмодуль кручения можно понимать как множество тех элементов, которые отождествляются при локализации.

Общие понятия

Модуль упругости (модуль Юнга) — это показатель механического свойства материала, характеризующий его сопротивляемость деформации растяжения. Иными словами, это значение пластичности материала. Чем выше значения модуля упругости, тем меньше будет какой-либо стержень растягиваться при иных равных нагрузках (площадь сечения, величина нагрузки и другие).

Модуль Юнга в теории упругости обозначается буквой Е. Он является составляющей закона Гука (о деформации упругих тел). Эта величина связывает возникающее в образце напряжение и его деформацию.

Измеряется эта величина согласно стандартной международной системе единиц в МПа (Мегапаскалях). Но инженеры на практике больше склоняются к применению размерности кгс/см2.

Опытным путём осуществляется определение этого показателя в научных лабораториях. Сутью этого метода является разрыв гантелеобразных образцов материала на специальном оборудовании. Узнав удлинение и натяжение, при которых образец разрушился, делят переменные данные друг на друга. Полученная величина и является модулем (Юнга) упругости.

Таким образом определяется только модуль Юнга материалов упругих: медь, сталь и прочее. А материалы хрупкие сжимают до того момента, пока не появятся трещины: бетон, чугун и им подобные.

https://youtube.com/watch?v=QlWLxxXVnm0

Способы расчета модуля упругости

Известны также и другие характеристики упругости, которые описывают сопротивление материалов к воздействиям как к линейным, так и отличным от них.

Обозначается как Е и выражается в Па или ГПа.

Показывает зависимость относительного удлинения от нормальной составляющей cилы (F) к ее площади распространения (S) и упругости (Е):

σz = F/ES (3)

Параметр также называют модулем Юнга или модулем упругости первого рода, в таблице показаны величины для материалов различной природы.

Название материалаЗначение параметра, ГПа
Алюминий70
Дюралюминий74
Железо180
Латунь95
Медь110
Никель210
Олово35
Свинец18
Серебро80
Серый чугун110
Сталь190/210
Стекло70
Титан112
Хром300

Модулем упругости второго рода называют модуль сдвига (G), который показывает сопротивление материала к сдвигающей силе (FG). Может быть выражена двумя способами.

Через касательные напряжения (τz) и угол сдвига (γ):

G = τz/γ (4)

Через соотношение модуля упругости первого рода и коэффициента Пуасонна (ν):

G = E/2(1+υ) (5)

Определенное в результате экспериментов значение сопротивления материала изгибу, называется модулем упругости при изгибе, и вычисляется следующим образом:

EИ = ((0,05-0,1)Fр— 0,2Fр)L2 / 4bh3(ƒ21) (6)

где Fр – разрушающая сила, Н;

L – расстояние между опорами, мм;

b, h – ширина и толщина образца, мм;

ƒ1, ƒ2– прогибы, образованные в результате нагрузки F1 и F2.

При равномерном давлении по всему объему на объект, возникает его сопротивление, называемое объемным модулем упругости или модулем сжатия (К). Выразить этот параметр можно, практически через все известные модули и коэффициент Пуассона.


Определение модуля упругости щебеночного основания

Параметры Ламе также используют для описания оценки прочности материала. Их два μ – модуль сдвига и λ. Они помогают учитывать все изменения внутри материала в трехмерном пространстве, тогда соотношения между нормальным напряжением и деформацией будет выглядеть следующим образом:

σ = 2με + λtrace(ε)I (7)

Оба параметра могут быть выражены из следующих соотношений:

λ = νE / (1+ν)(1-2ν) (8)

μ = E / 2(1+ν) (9)

Температурная зависимость модуля Юнга[ | ]

Температурная зависимость модуля упругости простых кристаллических материалов объясняется исходя из того, что модуль упругости M ( T ) {\displaystyle M(T)} определяется как вторая производная от внутренней энергии W ( T ) {\displaystyle W(T)} по соответствующей деформации E ( T ) = d 2 W ( T ) d ε 2 {\displaystyle E(T)={d^{2}W(T) \over d\varepsilon ^{2}}} . Поэтому при температурах T ≤ Θ D {\displaystyle T\leq \Theta _{D}} ( Θ D {\displaystyle \Theta _{D}} — температура Дебая) температурная зависимость модуля упругости определяется простым соотношением

M ( T ) = M 0 − M 1 T − M 2 T 2 {\displaystyle M(T)=M_{0}-M_{1}T-M_{2}T^{2}}

где M 0 {\displaystyle M_{0}} — адиабатический модуль упругости идеального кристалла при T ⟶ 0 K {\displaystyle T\longrightarrow 0K} ; M 1 T {\displaystyle M_{1}T} — дефект модуля, обусловленный тепловыми фононами; M 2 T 2 {\displaystyle M_{2}T^{2}} — дефект модуля, обусловленный тепловым движением электронов проводимости

Измерения

Прежде всего установите диапазон амплитуд, в котором выполняется условие (8). Для этого укрепите грузы на некотором расстоянии от проволоки и возбудите в системе крутильные колебания. Измеряя время нескольких (не менее 10-ти) полных колебаний, найдите период Т1. уменьшая амплитуду вдвое, тем же способом найдите соответствующий период Т2. если Т1= Т2, то для проведения измерений можно выбрать любую амплитуду не больше первой. Если же окажется, что , то амплитуду необходимо уменьшить до такого значения , начиная с которого для всех 2 и Т 2 . разработка этого вопроса предоставляется читателю.

Зная ƒ, найдите значение модуля сдвига G по формуле (2) и оцените допущенную при этом погрешность.

Примеры

  • Пусть M — свободный модуль над кольцом R, из определения немедленно следует, что M является модулем без кручения. В частности, векторные пространства не имеют кручения.
  • В модулярной группе любой нетривиальный элемент кручения либо имеет порядок 2 и является сопряженным с S, либо имеет порядок 3 и является сопряжённым с ST. Элементы кручения здесь не образуют подгруппу: например, S · ST = T, а T имеет бесконечный порядок.
  • Абелева группа QZ{\displaystyle \mathbb {Q} /\mathbb {Z} } (которую можно представлять себе как группу поворотов окружности на угол, соизмеримый с длиной окружности) является группой кручения. Этот пример можно обобщить следующим образом: если R — коммутативное кольцо, а Q — его поле частных, то Q/R является группой кручения.
  • Пусть задано векторное пространство V над полем F с линейным оператором. Если естественным образом рассматривать это пространство как F(x)-модуль, то этот модуль является модулем кручения (по теореме Гамильтона-Кэли, или просто из-за того, что пространство конечномерно).

Расчеты на прочность и жесткость

Прочность характеризует способность конструкционного материала сопротивляться внешним воздействиям без разрушений и остаточных изменений. Жесткость находится в линейной зависимости от модуля Юнга и размера сечения. Чем больше площадь, модуль упругости не меняется, тем больше жесткость. В общем случае жесткость подразумевает способность деформироваться без значительных изменений. Коэффициент запаса прочности – безразмерная величина, равная отношению предельного напряжения к допустимому. Запас прочности характеризует штатный режим работы конструкции даже с учетом случайных и не предусмотренных нагрузок. Наименьшим запасом прочности обладают пластические (1.2-2.5) и хрупкие (2-5) материалы.

Применение в расчетах этих коэффициентов позволяет, например, рассчитать опасную толщину для стержня, при которой может возникнуть максимальное нормальное напряжение. Используя коэффициент прочности и возможное предельное напряжение возможно произвести расчет необходимого диаметра вала, который гарантированно обеспечит упругую деформацию и не приведет к пластической. Для инженеров-экономистов важны расчеты наименьших безопасных размеров деталей конструкции по заданным нагрузкам.

Большинство практических расчетов на прочность и жесткость производятся для получения минимальных значений геометрических размеров конструкционных элементов и деталей машин в условиях известных внешних воздействий и необходимого и достаточного запаса прочности. Может решаться обратная задача получения значений предельных нагрузок при условии сохранения геометрических размеров и для конкретного материала.

Сложные конструкции могут быть разделены на элементарные части, для которых будут производиться расчеты, затем полученные результаты интерпретируются в рамках всей системы, для этого удобно строить эпюры распределения внешних воздействий и внутренних напряжений статически определенной системы.

С помощью известной жесткости материала делают расчеты максимально возможной длины балки или стержня (вала) при условии неизменности его сечения. Для ступенчатых валов необходимо строить эпюры воздействия внешних сил и возникающих в точках их приложения внутренних напряжений в критических точках. От правильно построенной теоретической модели будет зависеть насколько эффективно и долго прослужит вал для станка, не разрушится ли он от динамических крутящих моментов. На этапе проектирования можно выявить потенциальные слабые точки и рассчитать необходимые параметры для заданного предела прочности.

При расчетах соединений используют пределы текучести используемых материалов и коэффициенты запаса прочности, вычисляют максимально возможные напряжения.

Исследования на прочность обычно подразумевают решение нескольких задач: в условиях проведения поверочного расчета на проверку прочности при известных усилиях и площади сечения оценивают фактический коэффициент запаса прочности; подбор оптимального диаметра при заданных нагрузках и допустимом напряжении; вычисляют грузоподъемность или несущую способность с помощью определения внутреннего усилия при известной площади сечения и напряжении.

Прочностные расчеты при разных видах воздействий в рамках условно статических систем сложны, требуют учета многих, иногда не очевидных, факторов, их практическая ценность заключается в вычислении допустимых размеров конструкционных материалов для заданных параметров запаса прочности.

II

£Э

1, 2— плиты; 3 — часть плана (плиты 1 и 2 сняты); 4 — часть плана (плита 1 снята)

Черт. 2

5. ПРОМЕЖУТОК ВРЕМЕНИ МЕЖДУ ВУЛКАНИЗАЦИЕЙ И ИСПЫТАНИЕМ

5.1. Если по техническим причинам не установлены специальные условия, то соблюдают требования пп. 5.2, 5.3.

5.2. Минимальное время между вулканизацией и испытанием — 16 ч.

5.3. Максимальное время между вулканизацией и испытанием — четыре недели. Для получения сравнимых результатов испытания следует проводить по возможности, после одного и того же промежутка времени между вулканизацией и испытанием.

6. КОНДИЦИОНИРОВАНИЕ ИСПЫТУЕМЫХ ОБРАЗЦОВ

6.1. Если испытание проводят при стандартной лабораторной температуре, то испытуемые образцы кондиционируют непосредственно перед испытанием не менее 16 ч при этой температуре.

6.2. Если испытания проводят при повышенной или пониженной температуре, то испытуемые образцы выдерживают при температуре испытания в течение времени, достаточного для достижения температурного равновесия со средой испытания, или в течение времени, указанного в технических требованиях на испытуемый материал или изделие, и затем образцы сразу же испытывают.

7. ТЕМПЕРАТУРА ИСПЫТАНИЯ

Испытания обычно проводят при стандартной лабораторной температуре (20 + 2), (23 + 2) или (27 + 2) °С. При использовании другой температуры ее выбирают из следующего ряда температур: -75, -55, -40, -25, -10, 0, 40, 50, 70, 85, 100, 125, 150, 175, 200, 225 и 250 °С.

В течение испытания или серии испытаний используют одну и ту же температуру для получения сравнимых результатов.

8. ПРОВВДЕНИЕ ИСПЫТАНИЯ

После кондиционирования образцов, проведенного в соответствии с разд. 6, их сразу же устанавливают в испытательную машину, обеспечив свободное выравнивание образцов в направлении приложения силы. Проводят не менее пяти последовательных плавных неразрушающих циклов с приложением и снятием нагрузки, соответствующих всему диапазону деформаций сдвига, который устанавливают предварительно для того, чтобы стабилизировать поведение резины при нагружении и устранить так называемый «эффект Маллинза».

Образец нагружают небольшим усилием около 10 Н и в этом положении устанавливают на нуль устройства для измерения нагрузки и деформации. Сразу же нагружают образец посредством перемещения зажима со скоростью (25 + 5) мм/мин до достижения максимальной выбранной деформации сдвига.

Записывают усилия, соответствующие заданным деформациям, или записывают деформации при заданных усилиях.

9. ОБРАБОТКА РЕЗУЛЬТАТОВ

9.1. Напряжение сдвига в паскалях* вычисляют как отношение прилагаемой силы к удвоенной площади крепления, которая равна удвоенному значению 20 х 25 х 10_6 м2.

9.2. Деформацию сдвига вычисляют делением половины фактической деформации испытуемого образца на толщину, подвергаемую сдвигу (оба показателя выражают в одинаковых единицах).

9.3. Средний кажущийся модуль сдвига, выраженный в паскалях, при любых значениях сдвиговых деформацией рассчитывают как отношение соответствующего напряжения сдвига к деформации сдвига.

10. ПРОТОКОЛ ИСПЫТАНИЯ

Протокол испытания должен содержать следующие данные:

1) результаты для всех трех испытуемых образцов, вычисленные в соответствии с разд. 9, для кажущегося модуля сдвига при различных деформациях сдвига;

2) марку резиновой смеси;

3) описание процесса формования (компрессионное, плунжерное и т. д.);

4) продолжительность и температуру вулканизации;

5) температуру испытания;

6) дату вулканизации;

7) дату испытания;

8) разрушение образца, если оно происходит.

* 1 Па = 1 Н/м2.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. ПОДГОТОВЛЕН И ВНЕСЕН Всесоюзным научно-исследовательским институтом эластомерных материалов и изделий

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 26Л2.90 № 3295

3. Настоящий стандарт подготовлен методом прямого применения международного стандарта ИСО 1827—76 «Резина. Определение модуля сдвига. Метод сдвига четырехэлементного образца» и полностью ему соответствует

4. ПЕРЕИЗДАНИЕ. Ноябрь 2004 г.

Редактор Т.П. Шашина Технический редактор В.Н. Прусакова Корректор М.В. Бучная Компьютерная верстка И.А. Налейкиной

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 21.12.2004. Подписано в печать 19.01.2005. Уел. печ.л. 0,93. Уч.-изд.л. 0,60.

Тираж 60 экз. С 49. Зак. 28.

Отпечатано в филиале ИПК Издательство стандартов — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.

Плр № 080102

Кручение и локализация

Пусть R — область целостности с полем частных Q, а M — R-модуль. Тогда можно рассмотреть Q-модуль (то есть векторное пространство)

MQ=M⊗RQ.{\displaystyle M_{Q}=M\otimes _{R}Q.}

Существует естественный гомоморфизм a↦a⊗1{\displaystyle a\mapsto a\otimes 1} из абелевой группы M в абелеву группу MQ, и ядро этого гомоморфизма — в точности подмодуль кручения. Аналогично, для локализации кольца R по мультипликативной системе S

MS=M⊗RRS,{\displaystyle M_{S}=M\otimes _{R}R_{S},}

ядро естественного гомоморфизма — это в точности элементы S-кручения. Таким образом, подмодуль кручения можно понимать как множество тех элементов, которые отождествляются при локализации.

Механические свойства

Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала. А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:

  1. Жёсткостью называют произведение поперечного сечения профиля на модуль упругости. По этой величине можно судить о пластичности узла конструкции в целом, а не о материале отдельно. Единицей измерения являются килограммы силы.
  2. Продольное относительное удлинение — это отношение абсолютного удлинения материала-образца к его общей длине. К примеру, на стержень, длина которого равна 200 миллиметров, приложили некоторую силу. В результате он стал короче на 5 миллиметров. В результате относительное удлинение будет равняться 0,05. Эта величина безразмерная. Для более удобного восприятия иногда её переводят в проценты.
  3. Поперечное относительное удлинение рассчитывается точно так же, как и продольное относительное удлинение, но вместо длины берут диаметр стержня. Опытным путём было установлено, что для большего количества материала поперечное меньше продольного удлинения приблизительно в 4 раза.
  4. Коэффициент Пуассона. Это отношения относительной продольной к относительной поперечной деформации. При помощи этой величины можно полностью описать под воздействием нагрузки изменения формы.
  5. Модуль сдвига описывает упругие свойства под воздействием касательных свойств на образец. Иными словами, когда вектор силы направляется к поверхности тела под 90 градусов. Примером подобных нагрузок служит работа гвоздей на смятие, заклёпок на срез и пр. Этот параметр связан с вязкостью материала.
  6. Модуль упругости объёмной характеризует изменение объёма образца для разностороннего равномерного приложения нагрузки. Эта величина является отношением давления объёмного к деформации сжатия объёмной. Как пример можно рассматривать опущенный в воду материал, на который воздействует давление жидкости по всей его площади.

Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства. Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.

У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.

Модуль упругости различных материалов

Модули упругости для различных материалов имеют совершенно разные значения, которые зависят от:

  • природы веществ, формирующих состав материала;
  • моно- или многокомпонентный состав (чистое вещество, сплав и так далее);
  • структуры (металлическая или другой вид кристаллической решетки, молекулярное строение прочее);
  • плотности материала (распределения частиц в его объеме);
  • обработки, которой он подвергался (обжиг, травление, прессование и тому подобное).

Его значение для бронзовых материалов зависит не только от обработки, но и от химического состава:

  • бронза – 10,4 ГПа;
  • алюминиевая бронза при литье – 10,3 ГПа;
  • фосфористая бронза катанная – 11,3 ГПа.

Модуль Юнга латуни на много ниже – 78,5-98,1. Максимальное значение имеет катанная латунь.

Сама же медь в чистом виде характеризуется сопротивлением к внешним воздействиям значительно большим, чем ее сплавы – 128,7 ГПа. Обработка ее также снижает показатель, в том числе и прокатка:

  • литая – 82 ГПа;
  • прокатанная – 108 ГПа;
  • деформированная – 112 ГПа;
  • холоднотянутая – 127 ГПа.

Близким значением к меди обладает титан (108 ГПа), который считается одним из самых прочных металлов. А вот тяжелый, но ломкий свинец, показывает всего 15,7-16,2 ГПа, что сравнимо с прочностью древесины.

Для железа показатель напряжения к деформации также зависит от метода его обработки: литое – 100-130 или кованное – 196,2-215,8 ГПа.

Чугун известен своей хрупкостью имеет отношение напряжения к деформации от 73,6 до 150 ГПа, что соответствует от его виду. Тогда как для стали модуль упругости может достигать 235 ГПа.


Модули упругости некоторых материалов

На величины параметров прочности влияют также и формы изделий. Например, для стального каната проводят расчеты, где учитывают:

  • его диаметр;
  • шаг свивки;
  • угол свивки.

Интересно, что этот показатель для каната будет значительно ниже, чем для проволоки такого же диаметра.

Стоит отметить прочность и не металлических материалов. Например, среди модулей Юнга дерева наименьший у сосны – 8,8 ГПа, а вот у группы твердых пород, которые объединены под названием «железное дерево» самый высокий – 32,5 ГПа, дуб и бук имеют равные показатели – 16,3 ГПа.

Среди строительных материалов, сопротивление к внешним силам у, казалось бы, прочного гранита всего 35-50 ГПа, когда даже у стекла – 78 ГПа. Уступают стеклу бетон – до 40 ГПа, известняк и мрамор, со значениями 35 и 50 ГПа соответственно.

Такие гибкие материалы, как каучук и резина, выдерживают осевую нагрузку от 0,0015 до 0,0079 ГПа.

Модуль упругости Юнга и сдвига, коэффициент Пуассона значения (Таблица)

Упругие свойства тел

Ниже приводятся справочные таблицы общеупотребительных констант; если известны две их них, то этого вполне достаточно для определения упругих свойств однородного изотропного твердого тела.

Модуль Юнга или модуль продольной упругости в дин/см2.

Модуль сдвига или модуль кручения G в дин/см2.

Модуль всестороннего сжатия или модуль объемной упругости К в дин/см2.

Объем сжимаемости k=1/K/.

Коэффициент Пуассона µ равен отношению поперечного относительного сжатия к продольному относительному растяжению.

Для однородного изотропного твердого материала имеют место следующие соотношения между этими константами:

G = E / 2(1 + μ) — (α)

μ = (E / 2G) — 1 — (b)

K = E / 3(1 — 2μ) — (c)

Коэффициент Пуассона имеет положительный знак, и его значение обычно заключено в пределах от 0,25 до 0,5, но в некоторых случаях он может выходить за указанные пределы. Степень совпадения наблюдаемых значений µ и вычисленных по формуле (b) является показателем изотропности материала.

Таблицы значений Модуля упругости Юнга, Модуля сдвига и коэффициента Пуассона

Курсивом даны значения, вычисленные из соотношений (a), (b), (c).

Материал при 18°С Модуль Юнга E, 1011 дин/см2. Модуль сдвига G, 1011 дин/см2. Коэффициент Пуассона µ Модуль объемной упругости К, 1011 дин/см2.
Алюминий 7,05 2,62 0,345 7,58
Висмут 3,19 1,20 0,330 3,13
Железо 21,2 8,2 0,29 16,9
Золото 7,8 2,7 0,44 21,7
Кадмий 4,99 1,92 0,300 4,16
Медь 12,98 4,833 0,343 13,76
Никель 20,4 7,9 0,280 16,1
Платина 16,8 6,1 0,377 22,8
Свинец 1,62 0,562 0,441 4,6
Серебро 8,27 3,03 0,367 10,4
Титан 11,6 4,38 0,32 10,7
Цинк 9,0 3,6 0,25 6,0
Сталь (1% С) 1) 21,0 8,10 0,293 16,88
(мягкая) 21,0 8,12 0,291 16,78
Константан 2) 16,3 6,11 0,327 15,7
Манганин 12,4 4,65 0,334 12,4
1) Для стали, содержащий около 1% С, упругие константы, как известно , меняются при термообработке.

2) 60% Cu, 40% Ni.

Экспериментальные результаты, приводимые ниже, относятся к обычным лабораторным материалам, главным образом проволокам.

Вещество Модуль Юнга E, 1011 дин/см2. Модуль сдвига G, 1011 дин/см2. Коэффициент Пуассона µ Модуль объемной упругости К, 1011 дин/см2.
Бронза (66% Cu) -9,7-10,2 3,3-3,7 0,34-0,40 11,2
Медь 10,5-13,0 3,5-4,9 0,34 13,8
Нейзильбер1) 11,6 4,3-4,7 0,37
Стекло 5,1-7,1 3,1 0,17-0,32 3,75
Стекло иенское крон 6,5-7,8 2,6-3,2 0,20-0,27 4,0-5,9
Стекло иенское флинт 5,0-6,0 2,0-2,5 0,22-0,26 3,6-3,8
Железо сварочное 19-20 7,7-8,3 0,29 16,9
Чугун 10-13 3,5-5,3 0,23-0,31 9,6
Магний 4,25 1,63 0,30
Бронза фосфористая2) 12,0 4,36 0,38
Платиноид3) 13,6 3,6 0,37
Кварцевые нити (плав.) 7,3 3,1 0,17 3,7
Резина мягкая вулканизированная 0,00015-0,0005 0,00005-0,00015 0,46-0,49
Сталь 20-21 7,9-8,9 0,25-0,33 16,8
Цинк 8,7 3,8 0,21
1) 60% Cu, 15% Ni, 25% Zn

2) 92,5% Cu, 7% Sn, 0,5% P

3) Нейзильбер с небольшим количеством вольфрама.

Вещество Модуль Юнга E, 1011 дин/см2. Вещество Модуль Юнга E, 1011 дин/см2.
Цинк (чистый) 9,0 Дуб 1,3
Иридий 52,0 Сосна 0,9
Родий 29,0 Красное дерево 0,88
Тантал 18,6 Цирконий 7,4
Инвар 17,6 Титан 10,5-11,0
Сплав 90% Pt, 10% Ir 21,0 Кальций 2,0-2,5
Дюралюминий 7,1 Свинец 0,7-1,6
Шелковые нити1 0,65 Тиковое дерево 1,66
Паутина2 0,3 Серебро 7,1-8,3
Кетгут 0,32 Пластмассы:
Лед (-20С) 0,28 Термопластичные 0,14-0,28
Кварц 7,3 Термореактивные 0,35-1,1
Мрамор 3,0-4,0 Вольфрам 41,1
1) Быстро уменьшается с увеличением нагрузки

2) Обнаруживает заметную упругую усталость

Температурный коэффициент (при 150С)

Et=E11 (1-ɑ (t-15)), Gt=G11 (1-ɑ (t-15))

Сжимаемость k, бар-1 (при 7-110С)
ɑ, для Е ɑ, для G
Алюминий 4,8*10-4 5,2*10-4 Алюминий 1,36*10-6
Латунь 3,7*10-4 4,6*10-4 Медь 0,73*10-6
Золото 4,8*10-4 3,3*10-4 Золото 0,61*10-6
Железо 2,3*10-4 2,8*10-4 Свинец 2,1*10-6
Сталь 2,4*10-4 2,6*10-4 Магний 2,8*10-6
Платина 0,98*10-4 1,0*10-4 Платина 0,36*10-6
Серебро 7,5*10-4 4,5*10-4 Стекло флинт 3,0*10-6
Олово 5,9*10-4 Стекло немецкое 2,57*10-6
Медь 3,0*10-4 3,1*10-4 Сталь 0,59*10-6
Нейзильбер 6,5*10-4
Фосфористая бронза 3,0*10-4
Кварцевые нити -1,5*10-4 -1,1*10-4
Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации