Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 1

Гост р исо 6507-1-2007 металлы и сплавы. измерение твердости по виккерсу. часть 1. метод измерения

Способ измерения твердости методом царапания

Способами царапания и резания твердость определяется соответственно как сопротивление материала царапанию или резанию. Способ царапания разработал Моос в начале XIX в.; им были предложена шкала твердости минералов по способности одного наносить царапины на поверхности другого. Эта десятибалльная шкала (от талька № 1 до алмаза № 10) используется в минералогии, а также для оценки твердости технической керамики и монокристаллов.

При определении твердости всеми методами (кроме микротвердости) измеряют интегральное значение твердости материала (усредненное для всех структурных составляющих).

Значения твердости нельзя однозначно переводить в значения других механических свойств материала. Однако определение твердости является эффективным способом сравнения друг с другом однотипных материалов и контроля их качества.

Измерение твердости по Шору

Метод определения твердости по Шору применяется для тестирования прокатных валиков на момент их изготовления. Кроме этого, проверка рассматриваемого показателя может проводиться при эксплуатации валиков на прокатных станках, так как из-за оказываемого воздействия структура металла может изменяться, ухудшая эксплуатационные качества. Регламентирован метод Шора ГОСТ 23273.

Шкала твердости по Шору

Рассматривая измерение твердости по Шору, следует отметить следующие моменты:

  1. В отличие от предыдущих способов, рассматриваемый основан на свободном падении алмазного индикатора на тестируемую поверхность с определенной высоты. Для тестирования применяется специальное оборудование, которое позволяет фиксировать точно высоту отскока.
  2. Масса применяемого бойка с алмазным наконечником составляет 36 грамм. Этот показатель важен, так как учитывается при проводимых расчетах.
  3. Твердость определяется по высоте отскока, измерение проводится в условных единицах. Падение образца на поверхность происходит с образованием небольшого углубления, а упругость приводит к обратному отскоку. Этот метод хорош тем, что позволяет проводить тестирование образцов, которые прошли предварительную термическую обработку. При постепенном вдавливании возникающая нагрузка может стать причиной деформирования используемого наконечника или шарика. В этом случае вероятность их деформации весьма мала.
  4. За 100 единиц твердости в этом случае принято считать высоту отскока 13,6 мм с возможностью небольшого отклонения в большую или меньшую сторону. Этот показатель можно получить при тестировании углеродистой стали, прошедшей процесс закалки. В качестве обозначения применяется аббревиатура HSD.

Сегодня этот способ измерения твердости применяется довольно редко из-за высокой погрешности и сложности замера высоты отскока байка от тестируемой поверхности.

Как ранее было отмечено, существует довольно большое количество методов измерения рассматриваемого показателя. Однако из-за сложности проведения тестов и большой погрешности многие уже не применяются.

В некоторых случаях проводится тестирование на микротвердость. Для измерения этого показателя прилагается статическая нагрузка к телу с формой пирамиды, и оно входит в испытуемые образец. Время выдержки может варьироваться в большом диапазоне. Показатель вычисляется примерно так же, как при методе Виккерса.

Твёрдость металлов

Твёрдость металлов – наиболее глубоко изученное и стандартизированное международной практикой измерение твёрдости. Наиболее распространены следующие методы:

Измерение твёрдости металлов по Бринеллю (твердомеры)

Один из старейших методов, твёрдость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Обозначается HB, где H — Hardness (твёрдость, англ.), B — Brinell (Бринелль, англ.)

Измерение твёрдости металлов по Роквеллу (твердомеры)

Это самый распространённый из методов начала XX века, твёрдость определяется по относительной глубине вдавливания металлического шарика или алмазного конуса в поверхность тестируемого материала. Обозначается HR, где H — Hardness (твёрдость, англ.), R — Rockwell (Роквелл, англ.), а 3-й буквой идёт обозначение типа шкалы, напр. HRA, HRB, HRC и т.д.

Измерение твёрдости металлов по Виккерсу (твердомеры и микротвердомеры)

Самая широкая по охвату шкала, твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Обозначается HV, где H — Hardness (твёрдость, англ.), V — Vickers (Виккерс, англ.).

Измерение твёрдости металлов по Шору (твердомеры и склероскопы)

Данный метод крайне редко используется, твёрдость определяется по высоте отскока бойка от поверхности. Обозначается HS, где H — Hardness (твёрдость, англ.), S — Shore (Шор, англ.), а 3-й буквой идёт обозначение типа шкалы, напр. HSD

Измерение твёрдости металлов по Либу (твердомеры)

Это самый широко применяемый на сегодня метод в мире, твёрдость определяется как отношение скоростей до и после отскока бойка от поверхности. Обозначается HL, где H — Hardness (твёрдость, англ.), L — Leeb (Либ, англ.), а 3-й буквой идёт обозначение типа датчика, напр. HLD, HLC и т.д.

Измерение твердости по Роквеллу

Метод измерения твердости по Роквеллу регламентирован ГОСТ 9013. При определении твердости этим методом тестируемый образец под действием двух последовательно прилагаемых нагрузок — предварительной P0 (обычно Р0 =10 кгс) и общей Р — вдавливают индентор (алмазный конус или стальной шарик). При этом общая нагрузка равна сумме предварительной P0 и основной Р1 нагрузок:

P = P0+P1

После выдержки под приложенной общей нагрузкой Р в течение 3…5 с основную нагрузку Р1 снимают и измеряют глубину проникновения индентора в материал А под действием общей нагрузки Р затем снимают оставшуюся предварительную нагрузку P0.

Твердость по Роквеллу измеряют в условных единицах. За единицу твердости принята величина, соответствующая осевому перемещению индентора на 0,002 мм. Число твердости опре­деляется по шкале индикатора (как правило, часового типа). Индикатор показывает результат вычитания разности глубин (h –h0), на которые вдавливается индентор под действием двух последовательно приложенных нагрузок, из некоторой константы. Величина h0 — глубина внедрения индентора в испыту­емый образец под действием предварительной нагрузки P0.

В зависимости от формы индентора и прилагаемой нагрузки введены три измерительные шкалы: А, В, С. Наиболее часто используемыми шкалами являются А и С.

Число твердости по Роквеллу обозначается цифрами, характе­ризующими величину твердости, со стоящим после них символом HRA, HRB или HRC (в зависимости от используемой шкалы измерения), например: 28 HRC

Шкалы, использующиеся при измерении твердости по Роквеллу

Проведение испытания

При испытании материалов, твердость которых не зависит от относительной влажности, дюрометр и образцы для испытания кондиционируют не менее 1 ч в условиях одной из стандартных атмосфер по ГОСТ 12423-2013 «Пластмассы. Условия кондиционирования и испытания образцов (проб)» (ISO 291), защитив их от воздействия прямых солнечных лучей. При испытании материалов, твердость которых зависит от относительной влажности, образцы для испытаний следует кондиционировать по тем же стандартам или согласно соответствующей нормативно-технической документации на испытуемый материал.

При этих же условиях проводят испытание.

Испытуемый образец должен иметь толщину не менее 6 мм. Для достижения необходимой толщины образец для испытаний может состоять из нескольких тонких слоев, но результаты испытаний, полученные с такими образцами, могут не согласовываться с результатами испытаний цельных образцов, так как поверхности таких слоев иногда не полностью соприкасаются друг с другом.

Размеры образцов должны позволять проводить испытание на расстоянии не менее 12 мм от любого края, если только заранее не будет известно, что при испытаниях на меньшем расстоянии от края достигаются идентичные результаты. Поверхность образца в месте контакта с опорной поверхностью на площади радиусом не менее 6 мм от кончика индентора должна быть очень ровной. На кривых, неровных или шероховатых поверхностях нельзя получить удовлетворительные результаты измерения твердости с помощью дюрометра.

Испытуемый образец помещают на твердую ровную горизонтальную поверхность. Дюрометр устанавливают в вертикальном положении так, чтобы кончик индентора находился на расстоянии не менее 12 мм от любого края образца. Как можно быстрее без толчка к образцу прижимают опорную поверхность дюрометра, держа её параллельно поверхности испытуемого образца. К опорной поверхности с помощью специального приспособления или груза прилагают давление, достаточное для обеспечения надежного контакта с образцом.

Допускается пригружение твердомера вручную.

Снимают показания индикаторного устройства спустя 15+1 с. Если необходимо произвести мгновенное измерение, то показание снимают в течение 1 с после прижатия опорной поверхности к образцу. В этом случае записывают максимальное значение, которое покажет индикатор дюрометра.

Лучшая воспроизводимость может быть достигнута путём использования подставки (штатива) для дюрометра или груза, центрируемого по оси индентора, или того и другого вместе для прижатия опорной поверхности к образцу. Для дюрометра типа А рекомендуется масса груза 1 кг, а для дюрометра типа D — 5 кг. Интервал времени, после которого снимают показания, может устанавливаться на отдельные материалы собственной нормативно-технической документацией.

Проводят пять измерений твердости в разных местах поверхности образца, но на расстоянии не менее 6 мм от точки предыдущего измерения, и определяют среднее значение. Рекомендуется при получении с помощью дюрометра типа A значений выше 90 испытания проводить с дюрометром типа D, а при получении с помощью дюрометра типа D значений меньше 20 испытания проводить с помощью дюрометра типа A.

Оформляют протокол испытаний, в который включают:

  • ссылку на стандарт;
  • полную идентификацию испытуемого материала;
  • описание образца для испытания, включая толщину, а в случае применения составного образца и число слоев;
  • температуру испытания и относительную влажность, если твердость испытуемого материала зависит от влажности;
  • тип дюрометра (A, D и т. д.);
  • если известно и если требуется, время, прошедшее с момента изготовления образца до момента измерения твердости;
  • отдельные значения твердости и интервал времени, по истечении которого эти показания снимались;
  • среднее значение твердости;
  • отдельные подробности процедуры, не указанные в стандартах, на которые имеются ссылки, и любые другие указания, которые могут повлиять на результаты.

Показания можно записывать по следующей форме, твердость по Шору: А/15:45, где A — тип дюрометра, 15 — время в секундах от момента приведения опорной поверхности в тесный контакт с образцом до момента снятия показания, 45 — показания. Аналогичным образом твердость по Шору D/1:60 означает показание 60, полученное с помощью дюрометра типа D в течение 1 с или от максимального показания.

Особенности методики Роквелла

Этот способ измерения был изобретен в 20-х годах XX века, более автоматизирован, чем предыдущий. Применяется для более твердых материалов. Основные его характеристики (ГОСТ 9013-59; гост 23677-79):

  1. Наличие первичной нагрузки в 10 кгс.
  2. Период выдержки: 10-60 с.
  3. Граничные значения возможных показателей: HRA: 20-88; HRB: 20-100; HRC: 20-70.
  4. Число визуализируется на циферблате твердомера, также может рассчитываться арифметически.
  5. Шкалы и инденторы. Известно 11 различных шкал в зависимости от типа индентора и предельно-допустимой статической нагрузки. Наиболее распространённые в использовании: А, В и С.

А: алмазный конусный наконечник, угол при вершине 120˚, общая допустимая сила статического влияния – 60 кгс, HRA; исследуются тонкие изделия, в основном прокат.

С: также алмазный конус, рассчитанный на максимальное усилие 150 кгс, HRC, применим для твердых и закаленных материалов.

В: шарик размером 1,588 мм, изготовленный из закаленной стали или из твердого карбидо-вольфрамового сплава, нагрузка – 100 кгс, HRB, используется для оценки твердости отожжённых изделий.

Шарикообразный наконечник (1,588 мм) применим для шкал Роквелла B, F, G. Также существуют шкалы E, H, K, для которых используется шарик диаметром 3,175 мм (ГОСТ 9013-59).

Количество проб, проделанных с помощью твердомера Роквелла на одной площади, ограничивается размером детали. Допускается повторная проба на расстоянии 3-4 диаметра от предыдущего места деформации. Толщина испытуемого изделия также регламентируется. Она должна быть не меньше увеличенной в 10 раз глубины внедрения наконечника.

Пример обозначения:

50HRC – твердость металла по Роквеллу, измерена с помощью алмазного наконечника, ее число равно 50.

Измерение твердости по Виккерсу

Метод измерения твердости по Виккерсу регламентируется ГОСТ 2999. Метод используют для определения твердости деталей и металлопродукции малой толщины, а также тонких поверхностных слоев, имеющих высокую твердость.

Твердость по Виккерсу измеряют путем вдавливания в образец алмазного наконечника в форме правильной четырехгранной пирамиды под действием нагрузки Р в течение времени выдержки τ. После снятия нагрузки измеряют диагонали оставшегося на поверхности материала отпечатка –d1, d2 и вычисляют их среднее арифметическое значение — d, мм.

Значения твердости по Виккерсу при стандартных нагрузках н зависимости от длины диагонали d (мм) даны в соответствующих таблицах.

При испытаниях применяют следующие нагрузки Р, кгc: 1; 2; 2,5; 3; 5; 10; 20; 30; 50; 100. Число твердости по Виккерсу обозначают цифрами, характеризующими величину твердости со стоящим после них символом HV (например, 200 HV). Иногда после символа HV указывают нагрузку и время выдержки, например: 200 HV 10/40 — твердость по Виккерсу, полученная при нагрузке Р= 10 кгс и времени выдержки под нагрузкой т=40 с.

В ГОСТе сказано, что точного перевода чисел твердости по Виккерсу на числа твердости, полученные другими методами, или на механические свойства при растяжении не существует и таких переводов (за исключением частных случаев) следует избегать.

Измерение твердости по Бринеллю

Рис. 2. Схема
испытаний на твердость по Бринеллю

2


(1)

Площадь шарового
сегмента составит:

,
мм2
(2)

где D
–диаметр шарика, (мм);

h
– глубина отпечатка, (мм).

Так как глубину
отпечатка измерить трудно, а проще
измерить диаметр отпечатка d,
выражают h
через диаметр шарика D
и отпечатка d:

,
(мм) (3)

Тогда
,
(мм2)
(4)

Число твердости по
Бринеллю определяется по формуле:

,
(кгс/мм2)
(5)

Для перевода
твердости по Бринеллю в единицы СИ
необходимо умножить число твердости в
кгс/мм2
на 9,81, т.е. HB=9,81*HB
(МПа).

Для получения
сопоставимых результатов при определении
твердости HB
шариками различного диаметра необходимо
соблюдать условие подобия.

Подобие отпечатков
при разных D
и P
будет обеспечено, если угол 
остается постоянным (Рис. 2.1). Подставив
в формулу (5)
,
получим следующее выражение:

Рис. 2.1 Схемы
испытаний на твердость:

а – по
Бринеллю, б – по Виккерсу, в – по Роквеллу

В практике при
определении твердости не делают
вычислений по формуле (5), а пользуются
таблицами, составленными для установленных
диаметров шариков, отпечатков и нагрузок.
Шарики применяют диаметром 10,5 и 2,5 мм.
Диаметр шарика и нагрузка выбираются
в соответствии с толщиной и твердостью
образца (табл. 1). При этом для получения
одинаковых чисел твердости одного
материала при испытании шариками разных
диаметров необходимо соблюдать закон
подобия между получаемыми диаметрами
отпечатков. Поэтому твердость измеряют
при постоянном соотношении между
величиной нагрузки P
и квадратом диаметра шарика D2.
Это соотношение должно быть различным
для металлов разной твердости.

Метод Бринелля не
рекомендуется применять для материалов
с твердостью более 450 HB,
так, как стальной шарик может заметно
деформироваться, что внесет погрешность
в результаты испытаний.

Таблица 1

Условия испытания
металлов на твердость по Бринеллю

Число твердости по
Бринеллю, измеренное при стандартном
испытании (D
= 10 мм, P
= 3000 кгс), записывается так: HB
350. Если испытания проведены при других
условиях, то запись будет иметь следующий
вид: HB
5/250/30-200, что означает – число твердости
200 получено при испытании шариком
диаметром 5 мм под нагрузкой 250 кгс и
длительности нагрузки 30 с.

При измерении
твердости по методу бринелля необходимо
выполнять следующие условия:

  • образцы с твердостью
    выше HB
    450 кгс/мм2
    (4500 МПа) испытывать запрещается;

  • поверхность образца
    должна быть плоской и очищенной от
    окалины и других посторонних веществ;

  • диаметры отпечатков
    должны находиться в пределах 0,2Dd0,6D;

  • образцы должны
    иметь толщину не менее 10 – кратной
    глубины отпечатка (или менее диаметра
    шарика);

  • расстояние между
    центрами соседних отпечатков и между
    центром отпечатка и краем образца
    должны быть не менее 4d.

О

Рис. 3 Схема
прибора для измерения твердости по
методу Бринелля

Диаметр отпечатка
измеряют при помощи отсчетного микроскопа
(лупы Бринелля), на окуляре которого
имеется шкала с делениями, соответствующими
десятым долям миллиметра. Измерение
проводят с точностью до 0,05 мм в двух
взаимно перпендикулярных направлениях;
для определения твердости следует
принимать среднюю из полученных величин.

Измерение твердости
по ВиккерсУ

При испытании на
твердость по методу Виккерса в поверхность
материала вдавливается алмазная
четырехгранная пирамида с углом при
вершине =136
(Рис. 2.1). После снятия нагрузки вдавливания
измеряется диагональ отпечатка d1.
Число твердости по Виккерсу HV
подсчитывается как отношение нагрузки
З к площади поверхности пирамидального
отпечатка М:

Число твердости
по Виккерсу обозначается символом HV
с указанием нагрузки P
и времени выдержки под нагрузкой, причем
размерность числа твердости (кгс/мм2)
не ставится. Продолжительность выдержки
индентора под нагрузкой принимают для
сталей 10 – 15 с, а для цветных металлов
– 30 с.

Первая пятерка

Тальк настолько мягок, что можно царапнуть ногтем. Такая же твердость у карандашей (точнее графита). По шкале соответствует единице. Многим людям он хорошо известен, так как из него изготавливается детская присыпка.

Следующий по твердости – это гипс (2), который тоже легко царапается и имеет особенное свойство. Стоит его измельчить в порошок и смешать с водой – получится пластинчатая масса, которой можно придать любую форму. Помимо белого цвета, есть оригинальные варианты желтого оттенка.

На третьем месте кальцит не случайно (3). Ногтем его уже не поцарапать, зато это можно сделать медной монетой. Такая же степень твердости у золота и серебра. Его второе название – биоминерал, и именно из него состоят раковины.

Флюорит по-другому именуется как плавиковый шпат и переводится как «текучий». Ни ногтем, ни монетой он не царапается, чего нельзя сказать про стекло или обычный нож. Его твердость, как можно понять, – 4.

На пятом месте располагается апатит (5), который еще поддается царапанию при помощи ножа или стекла (такой же характеристикой может похвастать лазурит). При помощи этого минерала добывается фосфор либо фосфорная кислота.

Соотношение значений твердости

При выборе метода измерения твердости поверхности следует учитывать, что между полученными данными нет никакой связи. Другими словами, выполнить точный перевод одной единицы измерения в другую нельзя. Применяемые таблицы зависимости не имеют физического смысла, так как они эмпирические. Отсутствие зависимости также можно связать с тем, что при тестировании применяется разная нагрузка, различные формы наконечников.

Существующие таблицы следует применять с большой осторожностью, так как они дают только приблизительные результаты. В некоторых случаях рассматриваемый перевод может оказаться весьма точным, что связано с близкими физико-механическими свойствами испытуемых металлов

В заключение отметим, что значение твердости связано со многими другими механическими свойствами, к примеру, прочностью, упругостью и пластичностью. Поэтому для определения основных свойств металла довольно часто проводят измерение именно твердости. Однако прямой зависимости между всеми механическими свойствами металлов и сплавов нет, что следует учитывать при проведении измерений.

Измерение твердости по Бринеллю

Рис. 2. Схема
испытаний на твердость по Бринеллю

2


(1)

Площадь шарового
сегмента составит:

,
мм2
(2)

где D
–диаметр шарика, (мм);

h
– глубина отпечатка, (мм).

Так как глубину
отпечатка измерить трудно, а проще
измерить диаметр отпечатка d,
выражают h
через диаметр шарика D
и отпечатка d:

,
(мм) (3)

Тогда
,
(мм2)
(4)

Число твердости по
Бринеллю определяется по формуле:

,
(кгс/мм2)
(5)

Для перевода
твердости по Бринеллю в единицы СИ
необходимо умножить число твердости в
кгс/мм2
на 9,81, т.е. HB=9,81*HB
(МПа).

Для получения
сопоставимых результатов при определении
твердости HB
шариками различного диаметра необходимо
соблюдать условие подобия.

Подобие отпечатков
при разных D
и P
будет обеспечено, если угол 
остается постоянным (Рис. 2.1). Подставив
в формулу (5)
,
получим следующее выражение:

Рис. 2.1 Схемы
испытаний на твердость:

а – по
Бринеллю, б – по Виккерсу, в – по Роквеллу

В практике при
определении твердости не делают
вычислений по формуле (5), а пользуются
таблицами, составленными для установленных
диаметров шариков, отпечатков и нагрузок.
Шарики применяют диаметром 10,5 и 2,5 мм.
Диаметр шарика и нагрузка выбираются
в соответствии с толщиной и твердостью
образца (табл. 1). При этом для получения
одинаковых чисел твердости одного
материала при испытании шариками разных
диаметров необходимо соблюдать закон
подобия между получаемыми диаметрами
отпечатков. Поэтому твердость измеряют
при постоянном соотношении между
величиной нагрузки P
и квадратом диаметра шарика D2.
Это соотношение должно быть различным
для металлов разной твердости.

Метод Бринелля не
рекомендуется применять для материалов
с твердостью более 450 HB,
так, как стальной шарик может заметно
деформироваться, что внесет погрешность
в результаты испытаний.

Таблица 1

Условия испытания
металлов на твердость по Бринеллю

Число твердости по
Бринеллю, измеренное при стандартном
испытании (D
= 10 мм, P
= 3000 кгс), записывается так: HB
350. Если испытания проведены при других
условиях, то запись будет иметь следующий
вид: HB
5/250/30-200, что означает – число твердости
200 получено при испытании шариком
диаметром 5 мм под нагрузкой 250 кгс и
длительности нагрузки 30 с.

При измерении
твердости по методу бринелля необходимо
выполнять следующие условия:

  • образцы с твердостью
    выше HB
    450 кгс/мм2
    (4500 МПа) испытывать запрещается;

  • поверхность образца
    должна быть плоской и очищенной от
    окалины и других посторонних веществ;

  • диаметры отпечатков
    должны находиться в пределах 0,2Dd0,6D;

  • образцы должны
    иметь толщину не менее 10 – кратной
    глубины отпечатка (или менее диаметра
    шарика);

  • расстояние между
    центрами соседних отпечатков и между
    центром отпечатка и краем образца
    должны быть не менее 4d.

О

Рис. 3 Схема
прибора для измерения твердости по
методу Бринелля

Диаметр отпечатка
измеряют при помощи отсчетного микроскопа
(лупы Бринелля), на окуляре которого
имеется шкала с делениями, соответствующими
десятым долям миллиметра. Измерение
проводят с точностью до 0,05 мм в двух
взаимно перпендикулярных направлениях;
для определения твердости следует
принимать среднюю из полученных величин.

Измерение твердости
по ВиккерсУ

При испытании на
твердость по методу Виккерса в поверхность
материала вдавливается алмазная
четырехгранная пирамида с углом при
вершине =136
(Рис. 2.1). После снятия нагрузки вдавливания
измеряется диагональ отпечатка d1.
Число твердости по Виккерсу HV
подсчитывается как отношение нагрузки
З к площади поверхности пирамидального
отпечатка М:

Число твердости
по Виккерсу обозначается символом HV
с указанием нагрузки P
и времени выдержки под нагрузкой, причем
размерность числа твердости (кгс/мм2)
не ставится. Продолжительность выдержки
индентора под нагрузкой принимают для
сталей 10 – 15 с, а для цветных металлов
– 30 с.

Метод Роквелла

Величина твердости по Роквеллу определяется по глубине отпечатка алмазного конуса или металлического шарика, оставленного на поверхности тестируемого образца. Причем она является безразмерной и обозначается буквами HR. Слишком мягкие материалы могут иметь отрицательные значения твердости.

Так называемый твердомер Роквелла был изобретен в начале прошлого века американцами Хью Роквеллом и Стэнли Роквеллом. В следующем видеоролике вы можете увидеть, как он работает. Крайне важным фактором для этого метода является толщина тестируемого образца. Она не должна быть менее значения десятикратной глубины проникновения индентора в испытуемое тело.

В зависимости от типа индентора и прилагаемой нагрузки существуют три измерительные шкалы. Их обозначают тремя латинскими буквами: A, B и C. Значение твердости по Роквеллу имеет числовой вид. Например: 25,5 HRC (последняя буква обозначает шкалу, которая была использована в тесте).

Суть метода

Метод определения твердости по Виккерсу основан на исследовании зависимости глубины проникновения алмазного конуса (индентора) в исследуемый материал от величины усилия. После снятия усилия на поверхности образца остается отпечаток, соответствующий глубине погружения индентора. Ввиду того, что геометрические размеры индентора известны и строго регламентированы, вместо глубины погружения определяют площадь отпечатка в поверхностном слое испытуемого материала.

Определение твердости по Виккерсу возможно для веществ с самыми высокими значениями, поскольку в качестве испытательного конуса используется пирамидка из алмаза, который имеет максимальную известную твёрдость.

Индентор выполнен в виде четырехугольной пирамиды с углами между гранями 136°. Такой угол выбран для того, чтобы сблизить значения метода Виккерса с методом Бриннеля. Таким образом, значения твердости в пределах 400-450 единиц практически совпадают, особенно, в области меньших значений.

Метод Виккерса

Твердость по Виккерсу определяют путем вдавливания пирамиды в испытуемый образец под действием силы определенной величины. Зная приложенную силу и площадь отпечатка можно определить твердость поверхности испытуемого материала.

Вместо расчета площади отпечатка используются значения измеренных диагоналей ромба, между которыми находится прямая зависимость.

Итоговый результат твёрдости определяют по формуле:

Как правило, при измерениях по Виккерсу никаких вычислений по приведенной формуле не применяют, а используют табличные значения, исходя из приложенного усилия, времени воздействия и результирующей площади следа.

Значение приложенной силы регламентировано и составляет 30 кг. Время воздействия на поверхность обычно составляет 10-15 с. Это самые распространенные значения, однако во многих ситуациях необходимо воздействовать на материал образца при помощи иных значений силы.

Величина нагрузки зависит от измеряемого материала (его предполагаемой твердости). Чем тверже поверхность испытуемого образца материала, тем больше нагрузка. Это вызвано стремлением к уменьшению погрешности при определении площади и уменьшения влияния вязкости материала.

Для снижения погрешности также предъявляются ограничения по размерам испытуемого образца. Минимальная толщина образца должна быть в 1,2-1,5 раз больше предполагаемой диагонали отпечатка в зависимости от вида металла (меньшая величина соответствует стали, большая предназначена для цветных металлов). Расстояние между краем образца или краем предыдущего отпечатка и центром отпечатка должно быть не менее 2,5 величины диагонали.

Особые требования предъявляются также к чистоте поверхности. Ее шероховатость не должна превышать 0,16 мкм, что означает необходимость в полировке поверхности.

Таблица для определения твердости по Виккерсу

Малые линейные размеры образца требуют применение микроскопа дл измерения размеров отпечатка, причем, чем тверже образец, тем более четкую картинку должен передавать микроскоп для сохранения точности измерения.

Способы измерения твердости

Что характерно, испытание на твердость проводится чаще, чем определение всех остальных свойств материалов – прочности, относительного удлинения и прочих. Способов узнать, насколько тверда сталь или любой другой минерал, несколько. Но все они основываются на общем принципе: на испытываемый образец воздействуют другим объектом, прилагая определенное давление. Это может быть шарик, пирамида, пуансон.

Определение твердости производится по глубине внедрения и показателям давления. Минимальные усилия и большая глубина говорят о низких свойствах материала. Равносильно и наоборот, большие усилия и малая глубина – твердость высокая.

При этом испытания могут быть двух основных видов:

  • Статические.
  • Динамические.

Если контакт исследуемого образца и объекта происходит в течение определенного промежутка времени, то испытание носит статичный характер. В ином случае речь идет о динамичном способе определения твердости.

В настоящее время для определения твердости материалов применяют:

  • Метод Виккерса (ГОСТ 2999-75).
  • Метод Бринелля (ГОСТ 9012-59).
  • Метод Роквелла (ГОСТ 9013-59).
  • Метод Шора.
  • Метод Мооса.

Выбор того или иного испытания зависит от специфики применения деталей, необходимой точности результата, а также способности воспроизвести исследования при различных условиях.

Преимущества и недостатки метода

Каждый метод вычисления твердости поверхности обладает своими определенными достоинствами и недостатками. Принято считать, что испытание на твердость по Роквеллу и Бринеллю являются основными, так как позволяют получить наиболее точный результат.

К достоинствам метода измерения твердости по Роквеллу HRC можно отнести нижеприведенные моменты:

  1. Технология определяет возможность тестирования поверхностей с повышенной твердостью.
  2. При тестировании поверхность повреждается несущественно, что позволяет исследовать уже готовые изделия.
  3. Существенно упрощается процесс расчетов показателя твердости, так как нет необходимости в замере диаметра получаемого отпечатка после снятия прилагаемой нагрузки.
  4. На проведение измерений по Роквеллу уходит всего несколько секунд.

Однако есть и несколько существенных недостатков, которые также нужно учитывать:

  1. В сравнении с методом по Бринеллю, получаемый результат не так точен.
  2. Для повышения точности проводимых измерений следует тщательно подготовить поверхность.

Несмотря на то, что получаемые результаты могут иметь достаточно высокую погрешность, этот метод получил широкое распространение в машиностроительной и других отраслях промышленности, так как на тестирование уходит мало времени.

Показатель твердости зависит от достаточно большого количества моментов, к примеру, химического состава. Кроме этого, металлы могут улучшаться закалкой и другими видами термической обработки. Сегодня можно встретить довольно много методической литературы с таблицами, в которых указывается твердость для распространенных материалов. Принимаются эти значения зачастую при выполнении расчетов или проектировании.

На точность проводимых измерений может оказывать влияние:

  1. Толщина испытуемого образца. Согласно принятым нормам при проникновении алмазного наконечника на 0,2 мм толщина испытуемого образца должна быть не меньше 2 см. В противном случае, полученные данные будут считаться искаженными.
  2. Если один образец применяется для проведения нескольких тестов, то расстояние между отпечатками должно быть не менее трех их диаметров. Соблюдение этого правила также позволяет получить более точные результаты.
  3. Результаты на циферблате могут отличаться в зависимости от положения исследователя. Повторные тестирования должны проводиться с одной точки обзора, иначе полученные результаты могут отличаться.

В заключение отметим, что сегодня подобные исследования проводятся все реже. Это связано с тем, что при изготовлении заготовок достигают высокой точности химического состава и физико-механических свойств. Поэтому каждой марке металла соответствует определенный показатель твердости по Роквеллу. Измерения зачастую проводятся после выполнения химико-термической обработки, когда от соблюдения применяемой технологии зависит конечный результат.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации