Андрей Смирнов
Время чтения: ~15 мин.
Просмотров: 0

Плотность меди. конвертер величин

Железо

Железо Fe находится в VІIIБ группе IV-го периода. Электронная конфигурация внешнего электронного слоя в основном состоянии 3d64s2. В соединениях железо может проявлять степени окисления равные +2, +3 и  +6. Наиболее устойчивой является степень окисления железа +3, соединения, содержащие железо в степени окисления +6 являются крайне сильными окислителями и относительно устойчивы только в сильнощелочных средах. Оксида и гидроксид железа (II) FeО и железа (II) Fe(ОН)2 обладают основными свойствами; в то время, как оксид железа (III) Fe2О3 и гидроксид железа (III) Fe(ОН)3 проявляют некоторые амфотерные свойства с преобладанием основных.

Биологическая роль меди

Организм здорового человека должен содержать не менее 100 г микроэлемента меди. Он выполняет важную биологическую роль:

  • Принимает участие в усвоении и выработке железа.
  • Компонент большинства ферментов, принимающих участие в окислительно-восстановительных процессах.
  • Обеспечивает наполнение мозга, тканей необходимым количеством кислорода.
  • Без элемента невозможно нормальное формирование сухожилий, скелета, мышц, хрящей.
  • Способствует образованию эритроцитов, гемоглобина.
  • В детском возрасте способствует росту костей.
  • Дефицит вещества приводит к ревматоидным артритам, аутоиммунным заболеваниям, воспалительным процессам в костях, тканях.
  • Делает стенки сосудов прочными, эластичными.
  • Поддерживает упругость кожи.

Свое название вещество получила от греческого слова «Кипр»

Его важность была установлена в 1928 году, в результате многочисленных научных исследований

Моль

Все вещества состоят из атомов и молекул

В химии важно точно измерять массу веществ, вступающих в реакцию и получающихся в результате нее. По определению моль является единицей количества вещества в СИ

Один моль содержит точно 6,02214076×10²³ элементарных частиц. Это значение численно равно константе Авогадро NA, если выражено в единицах моль⁻¹ и называется числом Авогадро. Количество вещества (символ n) системы является мерой количества структурных элементов. Структурным элементом может быть атом, молекула, ион, электрон или любая частица или группа частиц.

Постоянная Авогадро NA = 6.02214076×10²³ моль⁻¹. Число Авогадро — 6.02214076×10²³.

Другими словами моль — это количество вещества, равное по массе сумме атомных масс атомов и молекул вещества, умноженное на число Авогадро. Единица количества вещества моль является одной из семи основных единиц системы СИ и обозначается моль. Поскольку название единицы и ее условное обозначение совпадают, следует отметить, что условное обозначение не склоняется, в отличие от названия единицы, которую можно склонять по обычным правилам русского языка. Один моль чистого углерода-12 равен точно 12 г.

Расчет молярной массы

Молярную массу рассчитывают так:

  • определяют атомные массы элементов по таблице Менделеева;
  • определяют количество атомов каждого элемента в формуле соединения;
  • определяют молярную массу, складывая атомные массы входящих в соединение элементов, умноженные на их количество.

Например, рассчитаем молярную массу уксусной кислоты

Она состоит из:

  • двух атомов углерода
  • четырех атомов водорода
  • двух атомов кислорода

Расчет:

  • углерод C = 2 × 12,0107 г/моль = 24,0214 г/моль
  • водород H = 4 × 1,00794 г/моль = 4,03176 г/моль
  • кислород O = 2 × 15,9994 г/моль = 31,9988 г/моль
  • молярная масса = 24,0214 + 4,03176 + 31,9988 = 60,05196 g/mol

Наш калькулятор выполняет именно такой расчет. Можно ввести в него формулу уксусной кислоты и проверить что получится.

Автор статьи: Anatoly Zolotkov

Значения других единиц, равные введённым выше

 открыть 

 свернуть 

Метрическая система

плотность свинца → тонна на кубометр
(т/м³)
плотность свинца → килограмм на кубометр
(кг/м³)
плотность свинца → грамм на кубометр
(г/м³)
плотность свинца → миллиграмм на кубометр
(мг/м³)
плотность свинца → килограмм на литр
(кг/л)
плотность свинца → грамм на литр
(г/л)
плотность свинца → миллиграмм на литр
(мг/л)
плотность свинца → килограмм на кубический дециметр
(кг/дм³)
плотность свинца → грамм на кубический дециметр
(г/дм³)
плотность свинца → миллиграмм на кубический дециметр
(мг/дм³)
плотность свинца → килограмм на кубический сантиметр
(кг/см³)
плотность свинца → грамм на кубический сантиметр
(г/см³)
плотность свинца → миллиграмм на кубический сантиметр
(мг/см³)
плотность свинца → килограмм на миллилитр
(кг/мл)
плотность свинца → грамм на миллилитр
(г/мл)
плотность свинца → миллиграмм на миллилитр
(мг/мл)

Единицы:

тонна на кубометр
(т/м³)

 /
килограмм на кубометр
(кг/м³)

 /
грамм на кубометр
(г/м³)

 /
миллиграмм на кубометр
(мг/м³)

 /
килограмм на литр
(кг/л)

 /
грамм на литр
(г/л)

 /
миллиграмм на литр
(мг/л)

 /
килограмм на кубический дециметр
(кг/дм³)

 /
грамм на кубический дециметр
(г/дм³)

 /
миллиграмм на кубический дециметр
(мг/дм³)

 /
килограмм на кубический сантиметр
(кг/см³)

 /
грамм на кубический сантиметр
(г/см³)

 /
миллиграмм на кубический сантиметр
(мг/см³)

 /
килограмм на миллилитр
(кг/мл)

 /
грамм на миллилитр
(г/мл)

 /
миллиграмм на миллилитр
(мг/мл)

 открыть 

 свернуть 

Британские и американские единицы

плотность свинца → фунты на кубический ярд
(lb/yd³)
плотность свинца → фунты на кубический фут
(lb/ft³)
плотность свинца → фунты на кубический дюйм
(lb/in³)
плотность свинца → фунты на галлон США
(lb/gal)
плотность свинца → фунты на британский галлон
плотность свинца → фунты на бушель США
плотность свинца → унции на кубический ярд
(oz/yd³)
плотность свинца → унции на кубический фунт
(oz/ft³)
плотность свинца → унции на кубический дюйм
(oz/in³)
плотность свинца → унции на галлон США
(oz/gal)
плотность свинца → унции на британский галлон
плотность свинца → унции на бушель США

Единицы:

фунты на кубический ярд
(lb/yd³)

 /
фунты на кубический фут
(lb/ft³)

 /
фунты на кубический дюйм
(lb/in³)

 /
фунты на галлон США
(lb/gal)

 /
фунты на британский галлон

 /
фунты на бушель США

 /
унции на кубический ярд
(oz/yd³)

 /
унции на кубический фунт
(oz/ft³)

 /
унции на кубический дюйм
(oz/in³)

 /
унции на галлон США
(oz/gal)

 /
унции на британский галлон

 /
унции на бушель США

 открыть 

 свернуть 

Английские инжернерные и британские гравитационные единицы

плотность свинца → Слаг на кубический ярд
(slug/yd³)
плотность свинца → Слаг на кубический фут
(slug/ft³)
плотность свинца → Слаг на кубический дюйм
(slug/in³)

Единицы:

Слаг на кубический ярд
(slug/yd³)

 /
Слаг на кубический фут
(slug/ft³)

 /
Слаг на кубический дюйм
(slug/in³)

 открыть 

 свернуть 

Естественнные единицы

В физике естественные единицы измерения базируются только на фундаментальных физических константах. Определение этих единиц никак не связано ни с какими историческими человеческими построениями, только с фундаментальными законами природы.

плотность свинца → планковская плотность
(L⁻³M)

Единицы:

планковская плотность
(L⁻³M)

 открыть 

 свернуть 

Плотности различных веществ

Это лишь несколько примеров. Все плотности даны для стандартных условий температур и давления.

плотность свинца → плотность воздуха на уровне моря
плотность свинца → плотность воды при 0°C
плотность свинца → плотность воды при 4°C
плотность свинца → плотность воды при 100°C
плотность свинца → плотность льда
плотность свинца → плотность алмаза
плотность свинца → плотность железа
плотность свинца → плотность меди
плотность свинца → плотность серебра
плотность свинца → плотность свинца
плотность свинца → плотность золота
плотность свинца → плотность платины

Единицы:

плотность воздуха на уровне моря

 /
плотность воды при 0°C

 /
плотность воды при 4°C

 /
плотность воды при 100°C

 /
плотность льда

 /
плотность алмаза

 /
плотность железа

 /
плотность меди

 /
плотность серебра

 /
плотность свинца

 /
плотность золота

 /
плотность платины

Области и особенности применения

В древние времена металлическая медь использовалась для изготовления самых разных вещей. Умелое применение этого материала позволило древним людям обзавестись:

  • дорогой посудой;
  • украшениями;
  • инструментами, имеющими тонкое лезвие.

Сплавы меди

Говоря о применении меди, нельзя не упомянуть о ее значении в получении различных сплавов, в основу которых ложится именно этот металл. К таким сплавам относятся:

  • бронза;
  • латунь.

Две эти разновидности явяются основными видами медных сплавов. Первый бронзовый сплав был создан на Востоке еще за три тысячелетия до нашей эры. Бронза по праву может считаться одним из величайших достижений металлургов древности. По сути, бронза — это соединение меди с прочими элементами. В большинстве случаев в роли второго компонента выступает олово. Но вне зависимости от того, какие элементы входят в сплав, основным компонентом всегда является медь. Формула латуни содержит главным образом медь и цинк, но возможны и дополнения к ним в виде других химических элементов.

Помимо бронзы и латуни, этот химический элемент участвует в создании сплавов с другими металлами, среди которых алюминий, золото, никель, олово, серебро, титан, цинк. Медные сплавы с неметаллами, такими как кислород, сера и фосфор, используются гораздо реже.

Отрасли промышленности

Ценные свойства медных сплавов и чистого вещества способствовали их использованию в таких отраслях, как:

  • электротехника;
  • электромашиностроение;
  • приборостроение;
  • радиоэлектроника.

Но, разумеется, это еще не все области применения этого металла. Он является высокоэкологичным материалом. Именно поэтому он используется при строительстве домов. Например, кровельное покрытие, выполненное из металлической меди, благодаря своей высочайшей коррозийной устойчивости обладает сроком службы более сотни лет, не требуя при этом особого ухода и покраски.

Еще одна область использования этого металла — ювелирная отрасль. В основном он применяется в форме сплавов с золотом. Изделия из медно-золотого сплава характеризуются повышенной прочностью, высокой стойкостью. Такие изделия на протяжении долгого времени не деформируются и не истираются.

Соединения металлической меди выделяются высокой биологической активностью

В мире флоры этот металл имеет важное значение, так как он участвует в синтезе хлорофилла. Участие данного элемента в этом процессе позволяет обнаружить его в числе компонентов минеральных удобрений для растений

Роль в организме человека

Нехватка этого элемента в человеческом организме может оказать негативное влияние на состав крови, а именно ухудшить его. Восполнить дефицит этого вещества можно при помощи специально подобранного питания. Медь содержится во многих продуктах питания, поэтому составить полезный рацион по душе не составит труда. Для примера, одним из продуктов, в составе которых имеется этот элемент, является обычное молоко.

Но составляя насыщенное этим элементом меню, не следует забывать о том, что переизбыток его соединений может привести к отравлению организма

Поэтому, насыщая организм этим полезным веществом, очень важно не переусердствовать. И касается это не только количества потребляемых продуктов

К примеру, пищевое отравление может вызвать использование медной посуды. Приготовление пищи в такой посуде крайне не рекомендуется и даже воспрещается. Связано это с тем, что в процессе кипячения в пищу поступает значительное количество этого элемента, что может привести к отравлению.

В запрете на медную посуду есть одна оговорка. Использование такой посуды не представляет опасности в том случае, если ее внутренняя поверхность имеет оловянное покрытие. Только при выполнении этого условия использование медных кастрюлек не несет угрозы пищевого отравления.

Помимо всех перечисленных отраслей применения, распространение этого элемента не обошло стороной и медицину. В сфере лечения и поддержания здоровья он применяется в качестве вяжущего вещества и антисептика. Этот химический элемент входит в состав капель для глаз, которые используются при лечении такого заболевания, как конъюнктивит. Кроме того, медь является немаловажным компонентом различных растворов от ожогов.

Профессиональные вредности

Источником промышленного получения М. являются медьсодержащие руды, которые представлены наиболее часто сульфидами (халькопиритом — CuFeS2, борнитом — Cu5FeS4, халькозином — Cu2S, ковеллином — CuS) и окисленными минералами: карбонатами [малахитом — Cu2(OH)2CO3, азуритом — Cu3(OH)2(CO3)2] и окислами (купритом — Cu2O, меланконитом — CuO).

Человек контактирует с М. при добыче и обогащении руд, получении черновой меди, при использовании М. и ее соединений в промышленности и сельском хозяйстве. Избыточное поступление М. в организм оказывает токсическое действие, одной из причин к-рого является угнетение SH-ферментов. Токсическое действие простых соединений М. более выражено, чем комплексных. У рабочих, занятых обработкой изделий из М. и ее сплавов или при контакте с медьсодержащими фунгицидами, возможно острое отравление, проявляющееся ознобом, кратковременным повышением температуры, заканчивающимся проливным потом. При более длительной лихорадке характерны явления со стороны жел.-киш. тракта — тошнота с жаждой, сладкий вкус во рту, слюнотечение, рвота. Такая «медная» или «медно-протравная» лихорадка по клин, картине напоминает литейную лихорадку (см.).

В случаях приема перорально быстровсасывающихся соединений М. отмечают металлический вкус во рту, обильное слюнотечение, тошноту, рвоту; рвотные массы имеют сине-зеленый цвет. Отмечают схваткообразные боли в животе, понос с примесью крови, при этом фекалии приобретают черный цвет. Резко выражено гемолитическое действие М. — гемолиз, появление гемоглобина в моче, желтуха; в моче белок и гиалиновые цилиндры. Возможны симптомы уремии: слабость, головокружение, затрудненное дыхание. Может наблюдаться и «медно-протравная лихорадка» — озноб, температура до 39°, проливной пот, резкая слабость.

Неотложная терапия при остром отравлении М. — щелочные ингаляции, внутривенное введение р-ра глюкозы с аскорбиновой к-той, внутрь — крепкий сладкий чай. По показаниям — сердечные средства, кислород, тепло.

Длительное воздействие пыли медных руд может приводить к развитию у рабочих пневмокониоза (см.). При совместном действии с кварцем металлическая медь, ее окислы усиливают силикотический процесс в легких, специфически поражая сосуды и способствуя развитию воспалительной реакции. Для мелкодисперсных аэрозолей М. более характерно общее токсическое действие, проявляющееся функциональными изменениями печени, почек, нервной системы, жел.-киш. тракта.

Предельно допустимая концентрация в воздухе рабочей зоны для металлической меди —1 мг/м3 (в т. ч. среднесменная ПДК — 0,5 мг/м3), для кремнемедистого сплава — 4 мг/м3, для медно-никелевой руды — 4 мг/м3, для медно-сульфидных руд (при содержании в пыли менее 10% кристаллической двуокиси кремния) — 4 мг/м3.

Меры предупреждения профзаболеваний и интоксикаций. Для предотвращения выделения пыли в воздух рабочей зоны необходима герметизация процессов дробления руд и транспортировки сыпучих материалов, местная вытяжная вентиляция, увлажнение материала (бурение с промывкой, мокрое дробление, подача влажной шихты), внедрение более совершенных технол, процессов на медеплавильных заводах — обжиг в кипящем слое, электролитическая плавка, при сварочных работах — применение автоматической сварки под флюсом и в среде защитных газов неплавящимся вольфрамовым электродом. Для защиты органов дыхания от пыли используют респираторы (см.), при сварочных работах — маски с принудительной подачей воздуха.

Определение меди в пробе пыли производится по реакции ионов Cu2+ с диэтилдитиокарбаматом (образуется комплексное соединение, окрашенное в желтый цвет).

Расчет удельного веса

В настоящее время учеными разработано огромное количество способов, помогающих найти характеристики удельного веса меди, которые позволяют даже без обращения к специализированным таблицам вычислять этот немаловажный показатель. Зная его, можно с легкостью подобрать необходимые материалы, благодаря которым в конечном итоге можно получить нужную деталь с требуемыми параметрам. Это делается еще на стадии подготовки, когда планируется создать необходимую деталь из меди или ее содержащих сплавов.

Как уже говорилось выше, удельный вес меди можно подсмотреть в специализированном справочнике, но если под рукой такого нет, то его можно рассчитать по следующей формуле: вес делим на объем и получаем необходимую нам величину. Общими словами такое соотношение можно выразить как общее весовое значение к общему значению объема всего изделия.

Не стоит путать его с понятием плотности, так как он характеризует металл по-другому, хоть и имеет одинаковые значения показателей.

Рассмотрим, как можно вычислить удельный вес, если известна масса и объем медного изделия.

Например, имеем чистый медный лист толщиной 5 мм, шириной 2 м и длиной 1 м. Для начала посчитаем его объем: 5 мм * 1000 мм (1 м = 1000 мм) * 2000 мм, что составляет 10 000 000 мм3 или 10 000 см3. Для удобства расчетов будем считать, что масса листа составляет 89 кг 300 грамм или 89300 грамм. Делим рассчитанный результат на объем и получаем 8,93 г/см3. Зная этот показатель, мы всегда с легкостью можем вычислить весовое содержание в меди того или иного сплава. Это удобно, например, для обработки металла.

Основные свойства меди

1. Физические свойства.

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток, протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

2. Химические свойства.

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) – верхнего слоя платины.Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Свойства меди (таблица): температура, плотность, давление и пр.:

Общие сведения 
НазваниеМедь/ Cuprum
СимволCu
Номер в таблице29
ТипМеталл
ОткрытИзвестен с глубокой древности
Внешний вид и пр.Пластичный металл красно-розового цвета
Содержание в земной коре0,0068 %
Содержание в океане3,0×10-7 %
Свойства атома 
Атомная масса (молярная масса)63,546(3) а. е. м. (г/моль)
Электронная конфигурация1s2 2s2 2p6 3s2 3p6 3d10 4s1
Радиус атома128 пм
Химические свойства 
Степени окисления+3, +2, +1, 0
Валентность+1, +2, (+3)
Ковалентный радиус117 пм
Радиус иона(+2e) 73 (+1e) 77 (K=6) пм
Электроотрицательность1,90 (шкала Полинга)
Энергия ионизации (первый электрон)745,0 кДж/моль (7,72 эВ)
Электродный потенциал+0,337 В/ +0,521 В
Физические свойства
Плотность (при  нормальных условиях)8,92 г/см3
Температура плавления1084,62 °C (1357,77 K)
Температура кипения2562 °C (2835 K)
Уд. теплота плавления13,01 кДж/моль
Уд. теплота испарения304,6 кДж/моль
Молярная теплоёмкость24,44 Дж/(K·моль)
Молярный объём7,1 см³/моль
Теплопроводность (при 300 K)401 Вт/(м·К)
Электропроводность в твердой фазе59х106 См/м
Сверхпроводимость при температуре
Твёрдость3 по шкале Мооса, 369 МПа по Виккерсу
Структура решёткикубическая гранецентрированная
Параметры решётки3,615 Å
Температура Дебая315 К
Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации