Андрей Смирнов
Время чтения: ~11 мин.
Просмотров: 0

Мартенсит: как и почему

Структура и свойства

Кристаллическая структура мартенсита тетрагональна, элементарная ячейка имеет форму прямоугольного параллелепипеда, атомы железа расположены в вершинах и центре ячейки, атомы углерода в объёме ячеек. Структура неравновесна, и в ней есть большие внутренние напряжения, что в значительной степени определяет высокую твёрдость и прочность сталей с мартенситной структурой.

При нагреве сталей с мартенситной структурой происходит диффузионное перераспределение атомов углерода. В стали возникают две фазы — феррит, содержащий очень мало углерода (до 0,02 ) и цементит (6,67 % углерода). Элементарная ячейка феррита имеет форму куба, атомы железа расположены в вершинах и в центре куба (объемноцентрированная структура), цементит имеет ромбическую структуру. Элементарная ячейка цементита имеет форму прямоугольного параллелепипеда.

Кристаллическая решётка мартенсита связана постоянными кристаллографическими соотношениями с решёткой исходной структуры аустенита, то есть плоскости с определёнными кристаллографическими индексами в структуре мартенсита параллельны плоскостям с определёнными индексами в структуре аустенита. Соотношение между кристаллографическими направлениями в решётках мартенсита и аустенита аналогично.

Фазовая диаграмма Железо — Углерод.

Твердость — мартенсит

Твердость мартенсита в зависимости от содержания в нем углерода.

Схемы основных видов термической обработки сталей.

Твердость мартенсита возрастает с увеличением содержания в нем углерода. Однако увеличение содержания углерода повышает склонность мартенсита к хрупкому разрушению.

Твердость мартенсита в зависимости от содержания в нем углерода.

Твердость мартенсита определяется только содержанием углерода. Поэтому при малом его содержании и необходимости получения высокой твердости наплавленного слоя повышают содержание в сплаве других легирующих элементов. Этим достигается уменьшение критической скорости охлаждения.

Твердость мартенсита, образовав шегося в результате превращения в мартенситной области, практически зависит лишь от содержания углерода и связана с напряжениями второго и третьего рода. С увеличением содержания углерода в мартенсите твердость стали увеличивается. Отсюда следует, что с увеличением твердости — склонность стали к коррозионному растрескиванию будет увеличиваться.

Твердость мартенсита ( закаленной стали) определяется почти исключительно содержанием в стали углерода, тогда как прокаливаемость зависит от содержания углерода и легирующих элементов, размера зерна, однородности аустенита и других факторов.

Твердость мартенсита зависит только от содержания углерода в стали. Свойство стали увеличивать твердость мартенсита с увеличением содержания углерода называется закаливаемостью стали. На этом же графике приведена кривая твердости для сталей с 50 % мартенсита в структуре.

Твердость мартенсита и троостита определяется главным образом содержанием углерода и в меньшей степени зависит от присутствия легирующих элементов.

Твердость мартенсита углеродистой инструментальной стали также не является постоянной и зависит от температуры отпуска.

Так как твердость мартенсита ( а также и тростита) практически зависит только от содержания углерода, то, очевидно, и твердость полумартенситной зоны есть функция только содержания углерода.

Более точное объяснение твердости мартенсита дает теория дислокаций.

Термокинетическая диаграмма ( сталь типа ХЩ из. с кривыми.

Следует иметь в виду, что твердость мартенсита зависит от содержания углерода в основном металле.

Следовательно, должна была снизиться также твердость мартенсита, входящего в полу-мартенситную зону. Однако, как следует из хода кривой прока-ливаемости, этого не произошло. Поскольку, согласно данным , в полумартенситной зоне этого образца содержится 50 % мартенсита, около 40 % троостита и — 10 % феррита, очевидно, что снижение твердости мартенсита этой зоны было скомпенсировано повышением твердости троостита.

Ссылки

  • Зотов О. Г., Кисельников В. В., Кондратьев С. Ю. Физическое металловедение. — СПБГТУ, 2001.
  • [kutol.narod.ru/PUBL/martens.pdf Магницкий О.Н. и др. Моделирование на ЭВМ свойств твердых растворов железо—углерод как функции электронного строения легирующих компонентов и их состава. II.Прогнозирование физико-механических свойств твердых растворов альфа-железо—углерод (область мартенсита) ЭВМ. / О.Н.Магницкий, Е.Н.Пряхин, С.А.Кутолин, А.С.Капран, К.Л.Комаров, Ю.А.Фролов // Журнал физической химии — 1982. — Т. 56. — № 12. — С. 3026–3029.; Chem.Abstr. v.98,147571u,1983.]

Марки мартенситностареющей стали

В России к мартенситностареющим сталям относят марки: Н8К18М14, Н12К12М10ТЮ, Н12К12М7В7, Н12К15М10, Н12К16М12, Н12К8М3Г2, Н12К8М4Г2, Н13К15М10, Н13К16М10, Н15К9М5ТЮ, Н16К11М3Т2, Н16К15В9М2, Н16К4М5Т2Ю, Н17К10М2В10Т, Н17К11М4Т2Ю, Н17К12М5Т, Н18К12М3Т2, Н18К12М4Т2, Н18К14М5Т, Н18К3М4Т, Н18К4М7ТС, Н18К7М5Т, Н18К8М3Т, Н18К8М5Т, Н18К9М5Т, Н18Ф6М3, Н18Ф6М6 и прочие.

В США марки мартенситностареющей стали обозначаются числом (200, 250, 300 или 350), которое указывает приблизительную номинальную прочность на растяжение в тысячах фунтов на квадратный дюйм. Доли компонентов и требуемые свойства определены в MIL-S-46850D. Чем выше марка, тем больше кобальта и титана содержится в сплаве. Приведённые ниже параметры взяты из таблицы 1 MIL-S-46850D:

Доли компонентов в сортах мартенситностареющей стали,
% по массе
Элемент Сорт 200 сорт 250 Сорт 300 Сорт 350
Железо пропорц. пропорц. пропорц. пропорц.
Никель 17,0—19,0 17,0—19,0 18,0—19,0 18,0—19,0
Кобальт 8,0—9,0 7,0—8,5 8,5—9,5 11,5—12,5
Молибден 3,0—3,5 4,6—5,2 4,6—5,2 4,6—5,2
Титан 0,15—0,25 0,3—0,5 0,5—0,8 1,3—1,6
Алюминий 0,05—0,15 0,05—0,15 0,05—0,15 0,05—0,15

Эта группа сортов мартенситностареющей стали известна как 18Ni (по проценту содержания никеля). Существует также группы, не содержащих кобальта, которые дешевле, но не так прочны. Исследования мартенситностареющих сплавов железа, никеля и марганца были проведены в России и Японии.

1 Что такое мартенсит?

Под мартенситом понимают игольчатую микроструктуру, которая фиксируется в отдельных чистых металлах, имеющих склонность к полиморфизму, и металлических сплавах, прошедших процедуру закалки. По сути, мартенсит – это базовый структурный компонент стали после закалки, который является твердым пересыщенным упорядоченным раствором углерода в α-железе.
Впервые он был описан Марком Мартенсом – известным специалистом в области проблем, связанных с усталостью различных металлических материалов. Именно в его честь и был назван мартенсит.

Кристаллическая решетка интересующего нас углеродного раствора в α-железе является тетрагональной. Каждая из ее элементарных составляющих описывается формой параллелепипеда (прямоугольного). В центре и вершинах ячейки при этом размещаются атомы железа, а в объемах ячеек расположены атомы углерода. Высокие прочностные показатели и твердость, коими описывается любая мартенситная нержавеющая сталь, обуславливаются неравновесной структурой мартенсита, характеризуемой существенными внутренними напряжениями.

При нагреве мартенситного металла отмечается перераспределение (диффузионное) атомов углерода, что приводит к формированию двух фаз:

  • цементита (в этой фазе углерод содержится в количестве 6,67 %);
  • феррита (содержание углерода в ней – не более 0,02 %).

Элементарная ячейка первой из означенных фаз описывается ромбической структурой, вторая – объемно-центрированной. Решетка начальной структуры аустенита связана кристаллографическими постоянными соотношениями с решеткой мартенсита. Это означает, что плоскости с четко заданными кристаллографическими индексами аустенитной и мартенситной структуры параллельны друг другу.

Принято выделять два типа мартенсита:

3 Мартенситные стали – описание, особенности

Такие хромистые стали имеют в своем составе достаточно высокое содержание углерода. Кроме того, зачастую они легируются молибденом, ниобием, вольфрамом и иными компонентами, которые обеспечивают высокие жаропрочные показатели конечного металла.

Особенности сталей, относимых к мартенситному классу:

  • высокий уровень противодействия коррозии в растворах щелочей, некоторых кислотных растворах, в условиях повышенной влажности;
  • высокая жаропрочность: данную полезную способность мартенситный металл получает в том случае, когда выполняется его закалка при температурах около 1050 градусов, а затем и отпуск на троостит либо сорбит;
  • способность к самозакаливанию;
  • малая пластичность при высоком показателе твердости, на которую не оказывают никакого влияния, дополнительно вводимые в сплав легирующие элементы;
  • высокая водородоустойчивость, свойственная таким маркам стали, как Х5ВФ, Х5М, Х9М;
  • сложность обработки мартенситного металла резанием.

Популярные марки мартенситных стальных сплавов:

  • 20Х13: в нем содержится от 12 до 14 % хрома, менее 0,8 % марганца и кремния, от 0,16 до 0,25 % углерода, такая сталь не легируется никелем;
  • 10Х12НДЛ: особенность – большое содержание никеля (от 1 до 1,5 %);
  • 18Х11МНФБ: не более 11,5 % хрома, от 0,5 до 1 % никеля, до 0,21 % углерода, от 0,8 до 1,1 % молибдена;
  • 12Х11В2МФ, 10Х9МФБ, 13Х11Н2В2МФ, 15Х11МФ: легируются ванадием (от 0,18 до 0,4 %) и молибденом (от 0,35 до 1,1 %) в дополнение к стандартным добавкам.

Используются описываемые стали для производства:

  • роторов и корпусов газовых и паровых турбин;
  • сварных аппаратов и сосудов с нагрузками не более 16Мпа;
  • диафрагм турбин (паровых);
  • составляющих насосного оборудования;
  • лопаток турбин, работающих на пару;
  • пружин;
  • подвергающихся нагреву поверхностей коллекторов, котлов, трубопроводов;
  • хирургического, измерительно и режущего инструмента;
  • пластин компрессоров с клапанами.

Технология сварки сталей описываемого класса достаточно сложна, что вызвано склонностью таких металлов после процедуры закалки к хрупкому разрушению. Их следует сваривать после предварительного нагрева до 200–450 °С, причем температура окружающего воздуха должна быть плюсовой. Как правило, металлы мартенситной группы свариваются методом ручной дуговой сварки с применением электродов, покрытых спецсоставами. Реже используются другие виды сварки:

2 Что представляет собой мартенситное превращение в стали?

Такой полиморфный процесс предполагает то, что упорядоченное передвижение молекул либо атомов в составе кристалла вызывает модификацию их расположения по отношению друг к другу. Причем междуатомные расстояния в данном случае существенно больше, нежели показатели смещений относительного плана соседних атомов.

Деформации ячеек кристаллической решетки – это и есть ее перестройка, за счет чего окончание мартенситного преобразования вполне допускается описывать как однородно измененную начальную фазу. Отметим отдельно и то, что деформация имеет малую величину (не более 10 %). По этой причине энергетический барьер, который не дает развиваться однородному переходу начальной фазы в конечную, также невелик, если соотносить его с энергией связи в кристалле.

Описываемое нами превращение становится возможным только в том случае, когда постоянно присутствует упорядоченное взаимодействие между метастабильной и стабильной фазой. Повышенная подвижность и низкий энергетический потенциал межфазных границ обусловлены их упорядоченным строением.

Следствием этого становится то, что требуемая для появления кристаллов в новой фазе «лишняя» энергия, имеет малое значение. Ее вполне можно сопоставить с энергией «исходных» дефектов, имеющихся в начальной фазе. За счет такой особенности скорость образования мартенситных кристаллов является по-настоящему большой, причем, как правило, тепловых изменений для зарождения новых кристаллов не требуется.

Свойства мартенсита

В зависимости от методов обработки мартенсит подразделяется на несколько категорий:

  • обычный;
  • термоупругий;
  • пакетный;
  • деформационный;
  • гексагональный или 8-мартенсит;
  • пластинчатый.

Все эти разновидности – это сталь мартенситного класса, обладающая своими специфическими свойствами. Во всех случаях мартенсит представляет собой определённую марку стали. Например: 20Х13, 10Х12НДЛ, Х5ВФ, Х5М и многие другие.

К основным свойствам мартенситных сталей относится:

  • повышенная устойчивость к воздействию агрессивных растворов (кислотных или щелочных);
  • антикоррозийная стойкость к повышенному содержанию влаги;
  • высокая жаропрочность (особенно после проведения процедуры закалки);
  • способность к так называемому самозакаливанию;
  • повышенные показатели прочности (твёрдость мартенсита превосходит многие марки сталей);
  • устойчивость к вредному воздействию водорода;
  • невысокая пластичность;
  • трудности в обработке.

Два основных свойства твердость и антикоррозийная стойкость достигаются за счёт специальной обработки и добавлением соответствующих химических элементов. Мартенситная твёрдость в зависимости от содержания углерода может достигать достаточно высоких значений по основным шкалам оценки.

Мартенситная сталь

Мартенситные стали, имеющие характеристики между аустенитными и легированными никелем сталями, структурные отвердения, могут быть использованы в криогенной технике, в частности сталь KS1140, механические характеристики которой приведены в нижеследующей таблице.

Мартенситные стали, содержащие 12 — 13 % Сг, появились на широком рынке в 1912 — 1915 гг. в виде ножевых изделий, а первым, кто ясно представил их промышленные возможности, был X. В результате его очень часто называют изобретателем нержавеющей стали. В действительности же целый ряд исследований этих сплавов был выполнен еще в предшествующем десятилетии. Например, Гулле в 1902 — 1906 гг. и Портевен в 1909 — 1911 гг. во Франции и Гисен в 1907 — 1909 гг. в Англии изучали металлургию и физические свойства таких сталей.

Мартенситные стали, содержащие 13 % Сг, не предназначены для применения в морской воде. Напротив, использование стали 431S29 и дисперсионно твердеющих сортов в некоторых случаях оказалось успешным, однако следует учитывать, что в определенных условиях и эти стали подвержены коррозии. Те же оговорки относятся и к ферритным сталям, но на практике они редко применяются в условиях контакта с морской водой.

Зависимость скорости коррозии различ.

Мартенситные стали подвержены коррозионному растрескиванию только в состоянии высокой прочности.

Мартенситные стали свариваются высоколегированными хромо-никелевыми электродами, дающими наплавленный металл с высокой пластичностью. За счет пластичности наплавленного металла снижаются внутренние напряжения в сварном шве.

Мартенситные стали имеют оптимальную коррозионную стойкость после закалки из аустенитной области. В этом состоянии они обладают большой твердостью и хрупкостью.

Мартенситные стали, например 15Х11МФ, 15Х12ВНМФ, 10Х12НЗД, 18Х11МНФБ, 10Х12НД, предназначены для работы при температуре до 650 С. Из них делают, например, лопатки и диски паровых турбин и газотурбинных установок. Их дополнительно легируют молибденом, вольфрамом, ниобием, ванадием и никелем ( до 3 2 %), повышающими сопротивление сталей ползучести под напряжением при высокой температуре.

Мартенситные стали после отжига удовлетворительно обрабатываются резанием, горячая обработка давлением и сварка этих сталей затруднены из-за образования мартенсита.

Мартенситные стали предназначены для изделий, работающих при 450 — 600 С; от перлитных они отличаются повышенной стойкостью к окислению в атмосфере пара или топочных газов. По своей жаропрочности эти стали немного превосходят перлитные.

Мартенситные стали, если их подвергнуть термической обработке для повышения твердости, приобретают сильную склонность к растрескиванию в слабо — и умереннокислых растворах. Особенно это проявляется в присутствии сульфидов, соединений мышьяка или продуктов окисления фосфора или селена. Специфические свойства кислот не имеют существенного значения до тех пор, пока процесс идет с выделением водорода. Эта ситуация отличается от случая аустенитных сталей, которые разрушаются исключительно в результате специфического действия анионов. Катодная поляризация также не защищает мартенситные стали от растрескивания, а ускоряет его. Все эти факты свидетельствуют, что мартенситные стали в указанных условиях разрушаются не по механизму КРН, а в результате водородного растрескивания ( см. разд. При катодной поляризации в морской воде, особенно при высоких плотностях тока, более пластичные ферритные стали подвергаются водородному вспучиванию, а не растрескиванию. Аустенитные нержавеющие стали устойчивы и к водородному вспучиванию, и к водородному растрескиванию.

Мартенситные стали типа 17X15НЗМ и 15Х16Н2М используются в качестве теплостойких при температурах до 500 С.

Феррито-мартенситные и мартенситные стали имеют сравнительно с ферритными сталями пониженные кислотостойкость и окалиностой-кость и повышенну-ю прочность.

Химический состав ( в процентах и магнитные свойства мартенситных сталей для постоянных магнитов.

Поскольку мартенситные стали являются почти единственной группой магнитотвердых материалов, поставляемых не в виде готовых магнитов или заготовок, а в виде прутков разного сортамента, и операции по изготовлению магнитов, включая, как правило, термообработку, выполняются потребителем, следует подчеркнуть необходимость тщательного соблюдения режимов термообработки для получения оптимальных магнитных свойств.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации