Андрей Смирнов
Время чтения: ~22 мин.
Просмотров: 0

Магнитное дутьё

Структура дугового разряда

Область дугового разряда условно принято делить на три участка. Участки, непосредственно прилегающие к полюсам (аноду и катоду), называют соответственно, анодным и катодным.

Центральную часть дугового разряда, расположенную между анодной и катодной областями, называют столбом дуги. Температура в зоне сварочной дуги может достигать нескольких тысяч градусов (до 7000 °C).

Хотя тепло не полностью передается металлу, его вполне хватает для расплавления. Так, температура плавления стали для сравнения составляет 1300-1500 °C.

Для обеспечения устойчивого горения дугового разряда необходимы следующие условия: наличие тока порядка 10 Ампер (это минимальное значение, максимум может достигать 1000 Ампер), при поддержании напряжения дуги от 15 до 40 Вольт.

Падение этого напряжения происходит в дуговом разряде. Распределение напряжения по зонам дуги происходит неравномерно. Падение большей части приложенного напряжения происходит в анодной и катодной зонах.

Экспериментальным путем установлено, что при , наибольшее падение напряжения наблюдается в катодной зоне. В этой же части дуги наблюдается наиболее высокий градиент температуры.

Поэтому, при выборе полярности сварочного процесса, катод соединяют с электродом, когда хотят добиться наибольшего его плавления, повысив его температуру. Наоборот, для более глубокого провара заготовки, катод присоединяют к ней. В столбе дуги падает наименьшая часть напряжения.

При производстве сварочных работ неплавящимся электродом, катодное падение напряжения меньше анодного, то есть, зона повышенной температуры смещена к аноду.

Поэтому, при этой технологии, заготовка подключается к аноду, чем обеспечивается хороший ее прогрев и защита неплавящегося электрода от излишней температуры.

Основные свойства дугового разряда

В процессе работы, для того, чтобы возбудить дуговой разряд, производится кратковременное касание заготовки электродом, то есть, создание короткого замыкания с последующим разрывом металлического контакта и установлением требуемого воздушного зазора. Таким способом выбирается оптимальная длина сварочной дуги.

При очень коротком разряде электрод может прилипать к заготовке, плавление происходит чересчур интенсивно, что может привести к образованию наплывов. Длинная дуга отличается неустойчивостью горения и недостаточно высокой температурой в зоне сварки.

Неустойчивость и видимое искривление формы сварочной дуги часто можно наблюдать при работе промышленных сварочных агрегатов с достаточно массивными деталями. Это явление называется магнитным дутьем.

Суть его заключается в том, что сварочный ток дуги создает некоторое магнитное поле, которое взаимодействует с магнитным полем, создаваемым током, протекающим через массивную заготовку.

То есть, отклонение дуги вызывается магнитными силами. Дутьем процесс назван потому, что дуга отклоняется, как будто под воздействием ветра.

Радикальных способов борьбы с этим явлением нет. Для уменьшения влияния магнитного дутья применяют сварку укороченной дугой, а также располагают электрод под определенным углом.

Сущность

В процессе сварки в сварочной цепи протекает ток в электрической дуге и в сварочной цепи изделия. Эти токи создают магнитное поле.

Взаимодействие магнитного поля цепи тока в изделии с током столба дуги создает силу, направленную к его центру (явление пинч-эффекта). Эта сила, при подключении электрического провода к месту где заканчивается дуга, не вызывает отклонения столба, а возвращает его при отклонении в начальное положение.

Если место подключения провода находится на каком-либо расстоянии от перпендикуляра, то возникающее магнитное поле является поперечным и вызывает отклонение столба. Отклоняющая сила пропорциональна квадрату дугового тока, поэтому магнитное дутье увеличивается при увеличении сварочного тока. Дутье приводит к ограничению сварки постоянным током на больших значениях электрического тока.

Действие магнитного дутья сильно ослабляется при сварке на переменном токе. В этом случае под действием переменного магнитного поля тока в изделии наводится электродвижущая сила. Э. д. с. создает вихревые токи. Создаваемый ими магнитный поток меньше потока, создаваемого постоянным током. В результате при больших переменных токах (1000—2000 А) действие магнитного дутья незначительно.

Из-за магнитного дутья возникают трудности при сварке угловых и стыковых швов.

#21

Отправлено 18 Июль 2014 11:52

О практике:

про размагничивание вот здесь: 

Про компенсацию магнитного поля и устранения «магнитного дутья» магнитами

На фото: сварка намагниченных труб с магнитами у одного и «Трансгазов»

Тип электрода

Для определения полярности необходимо учитывать основные характеристики электрода: разновидности анодного пятна, разновидность флюса и температура. Выделяют следующие виды электрических проводников в зависимости от технических характеристик:

  1. ЦЛ-11: применяются при сварке по схемам обратной полярности. Эти электроды способны обрабатывать поверхность металлов из плотной нержавеющей стали и иных сплавов железа с высокой устойчивостью к воздействию коррозии. Они обеспечивают высокое качество шва без разрушения защитного слоя металла. Электродные стержни ЦЛ-11 покрываются специальным раствором из фосфора и калия. Он защищает сварочный шов от негативного воздействия окружающей среды. Электрические проводники ЦЛ-11 нужно хранить в сухих помещениях. При их эксплуатации рекомендуется использовать короткие дуги, что обеспечивает лучшую проплавку металла.
  2. НИАТ-1: применяются для соединения деталей небольшой толщины при подключении кабелей по схеме обратной полярности. Эти электроды обладают антикоррозийными свойствами. Они устойчивы к большим нагрузкам. Данные проводники увеличивают прочность сварочного соединения. В состав электрических проводников НИАТ-1 входят магний, молибден, углерод, никель и силикаты. Эти химические элементы обладают невысоким коэффициентов наплавки (до 10 г/Ач), что увеличивает производительность электрода. Перед эксплуатацией электрических проводников рекомендуется подвергнуть их термической обработке в специализированных печах. Прокалку электродов необходимо проводить в течение 1 часа.
  3. ОЗЛ-8: используются при обработке цветных металлов током прямой полярности. Они могут функционировать в рабочей среде с температурой ниже 1000°C. Эти электрические проводники имеют антикоррозийные свойства. Поэтому они могут применяться для обработки легированных сталей. Электродные стержни ОЗЛ-8 изготавливаются на основе небольшого стержня из сварочной проволоки диаметром до 5 мм. Коэффициент наплавки данных электрических проводников составляет не более 13 г/Ач, предел текучести – 400 МПА. Для наплавки 1 кг сварочного шва требуется 600 г электродов ОЗЛ-8.

При использовании электродов необходимо соблюдать следующие правила:

  1. Перед процессом сваривания металлических деталей тщательно очистить стержни электрического проводника.
  2. Обработать свариваемые детали химических раствором, защищающим их поверхность от пыли и иных видов загрязнений. Он также придает металлу блеск.
  3. При использовании новых электродов нужно предварительно осуществить их прокалку в специальных сушильных печах.
  4. В процессе сваривания заготовок требуется держать электродный стержень перпендикулярно оси сварочного шва.
  5. Держать электрическую дугу на расстоянии 3 мм от свариваемых кромок.
  6. Во время сварки нельзя совершать резкие рывки. В противном случае изменится рисунок шва.
  7. Чтобы избежать образования пористых поверхностей, необходимо очистить обрабатываемые изделия от шлаков и остатков расплавленного электрода.
  8. Нельзя допускать резкое понижение температуры электрического проводника. Иначе инструмент может частично деформироваться.

Нюансы эксплуатации электродов при разных полярностях указаны в инструкциях, составляемых при изготовлении этих инструментов. Они публикуются на официальных сайтах производителей электрических проводников.

Электрическая дуга и ее свойства

Образование дуги связано с ионизацией электрического разряда, который превращается в очень высокотемпературный плазменный поток. Дуга создает ударную волну, которая быстро нагревает воздух вдоль оси. Полученный горячий газовый поток поднимает с поверхности проводника расплавленные металлические частицы, которые во время ожога проникают в кожу жертвы, вызывая ее металлизацию. Затем следует электролиз тканевой жидкости, при котором жирные кислоты вступают в реакцию с соединениями металлов, образуя металлические соли, которые проникают в более глубокие слои кожи. Пострадавшие чувствуют боль от кожных ожогов с металлическими частицами и от присутствия инородных тел на эпидермисе.

Горящая электрическая дуга в воздухе характеризуется высокой температурой, высокой плотностью тока и небольшим перепадом напряжения по всей его длине. Электрическая дуга в воздухе не ограничивается пространством между электродами, а удлиняется под действием собственного электромагнитного поля.

Когда переменный ток проходит через ноль, сопротивление дуги стремится к бесконечности, и дуга должна быть погашена. Однако при достаточно высоком и быстро возрастающем возвратном напряжении дуга сразу же разгоняется с новой силой. Это случай, когда свободная дуга возникает при напряжении более 300 В и вдвое превышает амплитуду падения напряжения, называемую дуговым напряжением. Если эти условия не выполняются, дуга становится неустойчивой и затухает сама.

Падение напряжения на единицу длины дуги, называемое градиентом дуги, является постоянным примерно при 15 В/см и 5 кА и возрастает примерно до 20 В/см при 20 кА. В случае интенсивно охлаждаемой дуги ее градиент может быть выше, а лучшее охлаждение увеличивает потерю энергии дуги на окружающий газ. Увеличение охлаждения дуги означает, что ее мощность возрастает, а температура охлаждаемой дуги выше, чем у свободной дуги. Энергия электрической дуги E определяется по уравнению:

Формула №1

Где:

Е — энергия дуги,

u — напряжение дуги,

i — ток короткого замыкания, протекающий по дуге,

t — это время горения дуги.

Напряжение дуги (u) — это напряжение вдоль центра дуги, которое изменяется во времени и увеличивается с увеличением длины дуги. Время горения дуги (t) длится с момента возникновения, до ее тушения. Электроэнергия, подводимая к ядру дуги, рассеивается в окружающую среду излучением тепла и света. Предполагается, что мощность излучения от дуги составляет от 50 до 75% общей подаваемой мощности.

После зажигания электрическая дуга генерирует волну ударного давления, которая вызывается быстрым нагревом воздуха вдоль оси дуги. Амплитуду (A) этой волны давления можно грубо оценить по формуле:

Формула №2

Где:

i — ток короткого замыкания на дуге, в ,

t — время горения дуги, в ,

d — длина дуги, в .

В зависимости от расстояния до дуги люди получают травмы либо от ударной волны, либо от осколков электрооборудования, разрушенного этой волной. Однако наибольший ущерб наносит термическое воздействие дуги на окружающую среду. Температура дуги достигает 10 000 — 15 000 K. По закону Больцмана, энергия, излучаемая от источника с температурой q, пропорциональна θ4.

Количество тепла, получаемого телом, зависит от плотности излучаемой энергии, которая уменьшается с квадратом расстояния от оси дуги. Излученная тепловая энергия в теле пораженного человека увеличивает его температуру, величина которой зависит от удельной теплоты человеческого тела. Среднее значение удельной теплоты тканей человеческого тела составляет 3,3 Дж/г °С.

Органические материалы, контактирующие с дугой, подвергаются пиролизу. Это эндотермические процессы, которые поглощают часть энергии, поставляемой дугой. Образуются различные газы, в основном химически активные, которые экзотермически реагируют с кислородом воздуха, иногда выделяя большое количество дополнительного тепла.

При прямой и обратной полярности

Сварка постоянным током может выполняться 1 из 2 способов:

  1. «Плюс» подключают к заготовке, т.е. она становится анодом. Такую полярность называют прямой.
  2. К заготовке подключают «минус», так что она становится катодом. Это обратная полярность.


Сварка постоянным током может выполняться различными способами.

При сварке тугоплавким электродом анодное пятно горячее катодного, поэтому первый способ используют для соединения деталей средней или большой толщины. Сильный нагрев обеспечивает глубокий провар и, как следствие, высокую прочность шва.

Подключение с обратной полярностью используется для соединения тонкостенных заготовок. В противном случае они прогорят.

Разновидности

Существует несколько классификаций дуг по различным признакам.

По схеме электрического соединения электрические сварочные дуги разделяют на:

  • Прямого действия. Одним электродом является свариваемая конструкция, другой электрод плавящийся. Цепь образуют электрод и металл свариваемых деталей. В зазоре между ними разжигается дуга.
  • Косвенного действия. Разряд разжигается между двумя параллельными неплавкими электродами и подносится к свариваемым заготовкам.

Классификация сварочной дуги по схеме электрического соединения

По типу газовой среды, в которой возбуждается разряд, они подразделяются на:

  • Открытый. Действует в воздухе. Рабочую зону окружает облако из испарившегося металла, продуктов сгорания обмазки электродов.
  • Закрытый. Разряд идет под слоем флюсового порошка, облако состоит из испарившихся частиц  металлов и инертных газов, выделяющихся при плавлении флюсового порошка.
  • С принудительным нагнетанием инертных газов. В рабочую зону вдувается под небольшим давлением смесь инертных газов с углекислым и водородом в определенных пропорциях. Цель такого нагнетания — защитить материал сварочной ванны и нагретой до температуры пластичности зоны заготовок от контакта с кислородом и азотом воздуха.

По длительности работы:

  • постоянная (для длительной работы);
  • импульсная (мощный однократный импульс, применяется для контактной сварки).

По конструкции и назначению применяемых электродов:

  • Неплавкие (графит, вольфрам). Такие электроды не расходуются в процессе сварки, материал шва формируется из расплавившегося металла заготовок.
  • Плавкие. Изготавливаются из стальных сплавов. В ходе процесса металлический стержень электрода плавится, стекает в сварной зазор и вместе с расплавившимися кромками заготовок формирует шовный материал.

Классификация сварочной дуги по применяемым электродам

В состав плавких электродов включают специальные легирующие добавки, повышающие прочность и долговечность получившегося соединения.

Классификация

За счет широкого распространения сварочного процесса дуга может быть нескольких видов. Особенности энергетического электрозаряда позволяют выделить следующие его разновидности согласно конструкции и назначению:

  • плавкая изготавливается из стального сплава – при работе происходит расплавка металлического электродного стержня;
  • неплавкая актуальна при работе с графитом и вольфрамом – электроды данного вида во время сварки не расходуются, а формирование шва происходит из расплавленных металлических заготовок.

По схеме подвода тока и среде

Согласно схеме электросоединения дуги для сварки делят на две разновидности.

  1. Прямого действия. В качестве одного электрода выступает конструкция сварки, а второго – плавящийся элемент. В месте зазора происходит образование дуги.
  2. Косвенного действия. Розжиг происходит между парой неплавких параллельных электродов, после чего он подносится к свариваемой заготовке.

По атмосфере

По принципу атмосферы сварочные дуги бывают трех типов.

  1. Открытая сфера. В данном случае горение дуги возможно в открытом пространстве, при этом образуется газовая сфера с содержанием металлического пара, а также электродного и поверхностного.
  2. Закрытая. Дуга закрытого типа наблюдается при горении под флюсом. В фазе газа около дуги находится пар от материала, электрода и слоя флюса.
  3. С подачей смеси газа. В этом электрозаряде может располагаться газ в сжатом виде, а также его примеси. Использование водорода, углекислого газа и аргона необходимо для предотвращения окисления обрабатываемой поверхности. Благодаря подаче вышеперечисленных веществ наблюдается восстановление среды или ее нейтральное отношение по отношению к факторам последней.

По длительности действия

Согласно длительности работы электрическую сварочную дугу можно поделить на такие типы:

  • постоянная, которая считается актуальной для длительной работы;
  • импульсная, что представлена однократным мощным импульсом, обычно такая дуга используется для контактного вида сварки.

Магнитное дутье

Магнитное дутье проявляется преимущественно при сварке дугой постоянного тока. Заметное отклонение дуги и сильное ее блуждание наблюдается при токе 300 — 400 А и выше. Под воздействием магнитного дутья капли электродного металла разбрасываются в стороны, резко повышается разбрызгивание, ухудшается качество швов и снижается производительность, так как сварку швов приходится выполнять короткими участками.

Отклонение дуги магнитными полями.

Магнитное дутье проявляется преимущественно при сварке дугой постоянного тока.

Магнитное дутье в некоторых случаях затрудняет процесс сварки, и поэтому принимаются меры по снижению его действия на дугу.

Магнитное дутье создается электромагнитом, катушка которого включается последовательно в контур дуги. Важным элементом выключателя является камера гашения, которая способствует растягиванию и охлаждению дуги. На рис. 5 — 22, а показана камера с плоской узкой щелью, в которую дуга затягивается магнитным дутьем из широкой части камеры. Отдавая теплоту стенкам камеры, дуга гаснет. Третий тип камеры гашения показан на рис. 5 — 22, в. В этой конструкции узкая щель образуется за счет соответствующего расположения поперечных дугоегойких перегородок со смещенными относительно оси симметрии щелевыми вырезами.

Эффект магнитного дутья при дуговой сварке.

Магнитное дутье ведет к непроварам и ухудшает внешний вид шва. Уменьшить или устранить влияние магнитного дутья на качество сварного шва можно изменением места токоподвода к изделию и угла наклона электрода, временным размещением в зоне сварки дополнительного ферромагнитного материала, создающего симметричное магнитное поле, а также заменой постоянного тока переменным, если это допустимо по условиям свариваемости данного металла.

Параллельное магнитное дутье обычно используется в контакторах, рассчитанных на небольшие номинальные токи. Контактор с системой параллельного дутья реагирует на направление тока. Если направление магнитного поля сохранится неизменным, а ток изменит свое направление, то сила F будет направлена в противоположную сторону. Дуга будет перемещаться не в дугога-сительную камеру, а в противоположную сторону — на катушку магнитного дутья, что может привести к аварии в контакторе. Это является недостатком рассматриваемой системы. Недостатком этой системы является также необходимость повышения уровня изоляции катушки в расчете на полное напряжение сети. Понижение напряжения сети приводит к уменьшению намагничивающей силы катушки и ослаблению интенсивности магнитного дутья, что снижает надежность дугогашения.

Меньшее магнитное дутье в дуге переменного тока является существенным преимуществом последнего.

Удельное сопротивление некоторых металлов.

Магнитное дутье дуги переменного тока значительно слабее, чем дуги постоянного тока. В ряде случаев это является существенным достоинством использования переменного тока для сварки.

Если магнитное дутье вызывается наличием в свариваемой конструкции больших ферромагнитных масс, рекомендуется присоединить обратный провод со стороны, противоположной отклонению дуги.

Уменьшить магнитное дутье можно применением многостороннего или переносного токопровода, наклоном сварочного электрода при сварке ( этим практически широко пользуются сварщики), наложением внешних ( продольных или поперечных) магнитных полей, стабилизацией столба дуги потоком защитных газов, а также другими приемами. В каждом конкретном случае необходимо опробовать несколько приемов и выбрать лучший.

Система магнитного дутья состоит из последовательной катушки 15, размещенной на стальном сердечнике 14 с двумя стальными пластинами — полюсами 13, охватывающими дугогасительную камеру. Ток нагрузки, протекающий по катушке 15, создает магнитный поток Фк ( рис. VII.4, б) в зоне горения дуги. Дуга растягивается, интенсивно охлаждается и гаснет. Для облегчения гашения дуги могут применяться камеры с изоляционными перегородками 10, которые способствуют увеличению длины дуги и ее сопротивления.

Схема отклонения элек — сумме магнитных потоков сва-трической дуги магнитным полем рочного и вихревых токов, значительно меньше магнитного.

Сварочные аппараты «Дуга»

Надежность соединения зависит от следующих особенностей оборудования:

  • качества сборки;
  • встроенной электроники;
  • используемой оснастки.

Хороший аппарат стоит дорого, а дешевый не позволяет получить аккуратный и прочный шов. Оборудование марки «Дуга» лишено обоих недостатков. Оно имеет доступную стоимость, но только за счет упрощения конструкции, а не потери качества. Производитель не стал оснащать аппараты дорогим инвертором. Он взял за основу трансформаторное изделие и внес ряд усовершенствований, назвав конечный результат «сварочным выпрямителем». Получился простой в использовании агрегат средней мощности, предназначенный для работ в быту на постоянном токе.

Наиболее востребованы 2 модели:

  • 318МА;
  • 318М1.

Первая характеризуется следующим образом:

  1. Сварочный ток — до 160 А.
  2. Тип электрода — плавящийся или вольфрамовый с подачей аргона и других защитных газов.
  3. Питание — от сети 220 В или генератора.

Модель «Дуга 318М1» позиционируется как полупрофессиональная.

Ее параметры:

  1. Сварочный ток — до 300 А со ступенчатой регулировкой.
  2. Разновидность расходников — плавящиеся с покрытием, диаметром до 6 мм.
  3. Питание — сеть 220 В (включается в розетку).
  4. Охлаждение — принудительное.

Возможно производство следующих видов работ:

  1. Сварка деталей из нержавеющей стали.
  2. Резка металлов.
  3. Наплавка.

Недостаток аппаратов «Дуга» — большие габариты и вес (50 кг).

Физические явления

Электрическая дуга между двумя электродами в воздухе при атмосферном давлении образуется следующим образом:

При увеличении напряжения между двумя электродами до определённого уровня в воздухе между электродами возникает электрический пробой. Напряжение электрического пробоя зависит от расстояния между электродами и других факторов. Потенциал ионизации первого электрона атомов металлов составляет приблизительно 4,5 — 5 В, а напряжение дугообразования — в два раза больше (9 — 10 В). Требуется затратить энергию на выход электрона из атома металла одного электрода и на ионизацию атома второго электрода. Процесс приводит к образованию плазмы между электродами и горению дуги (для сравнения: минимальное напряжение для образования искрового разряда немногим превышает потенциал выхода электрона — до 6 В).

Для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь. Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения в воздушном промежутке образуется достаточное количество плазмы для значительного падения напряжения пробоя или сопротивления воздушного промежутка. При этом искровые разряды превращаются в дуговой разряд — плазменный шнур между электродами, являющийся плазменным тоннелем. Возникающая дуга является, по сути, проводником и замыкает электрическую цепь между электродами. В результате средний ток увеличивается ещё больше, нагревая дугу до 5000-50000 K. При этом считается, что поджиг дуги завершён. После поджига устойчивое горение дуги обеспечивается термоэлектронной эмиссией с катода, разогреваемого током и ионной бомбардировкой.

После поджига дуга может оставаться устойчивой при разведении электрических контактов до некоторого расстояния.

Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии.

При эксплуатации высоковольтных электроустановок, в которых при коммутации электрической цепи неизбежно появление электрической дуги, борьба с ней осуществляется при помощи электромагнитных катушек, совмещённых с дугогасительными камерами.
Среди других способов известны использование вакуумных, воздушных, элегазовых и масляных выключателей, а также методы отвода тока на временную нагрузку, самостоятельно разрывающую электрическую цепь.

Строение дуги

Строение электрической дуги при дуговой сварке. 1-анодная область, 2-область дуги и защитного газа, 3-дуга, 4-катодные пятна, 5-катодная область

Электрическая дуга состоит из катодной и анодной областей, столба дуги, переходных областей. Толщина анодной области составляет 0,001 мм, катодной области — около 0,0001 мм.

Температура в анодной области при сварке плавящимся электродом составляет около 2500 … 4000°С, температура в столбе дуги — от 7 000 до 18 000°С, в области катода — 9000 — 12000°С.

Столб дуги электрически нейтрален. В любом его сечении находятся одинаковое количество заряженных частиц противоположных знаков. Падение напряжения в столбе дуги пропорционально его длине.

Сварочные дуги классифицируют по:

  • Материалам электрода — с плавящимся и неплавящимся электродом;
  • Степени сжатия столба — свободную и сжатую дугу;
  • По используемому току — дуга постоянного и дуга переменного тока;
  • По полярности постоянного электрического тока — прямой полярности («-» на электроде, «+» — на изделии) и обратной полярности;
  • При использовании переменного тока — дуги однофазная и трехфазная.

Саморегулирование дуги

При возникновении внешнего возмущения — изменения напряжения сети, скорости подачи проволоки и др. — возникает нарушение в установившемся равновесии между скоростью подачи и скоростью плавления. При увеличении длины дуги в цепи уменьшаются сварочный ток и скорость плавления электродной проволоки, а скорость подачи, оставаясь постоянной, становится больше скорости плавления, что приводит к восстановлению длины дуги. При уменьшении длины дуги скорость плавления проволоки становится больше скорости подачи, это приводит к восстановлению нормальной длины дуги.

На эффективность процесса саморегулирования дуги значительно влияет форма вольт-амперной характеристики источника питания. Большое быстродействие колебания длины дуги отрабатывается автоматически при жестких ВАХ цепи.

Сущность и основные причины появления

Сильный электроток, протекающий по электродуге, создает собственное магнитное поле. Оно взаимодействует с постоянным полем массивной металлической конструкции. В результате этого взаимодействия возникает сила, направленная к центру поля. Если массовый провод подключен близко к месту работы, то эта сила действует вдоль столба и не вызывает ее смещения от вертикали. Однако чем дальше подключена масса, тем более проявляется поперечная составляющая этой силы. Под ее действием электродуга отклоняется в сторону подключения. Степень отклонения пропорциональна расстоянию от места подключения, намагниченности металлической конструкции и квадрату рабочего тока.

Эффект проявляется особенно сильно при высоких значениях сварочного тока и при сварке постоянным напряжением. При работе переменным током эффект дуться ослабляется изменением направления отклонения с частотой сварочного напряжения. Кроме того, возникающая электродвижущая сила наводит вихревые токи в поверхностных слоях металла, также стабилизирующие положение электродуги. Даже при больших значениях рабочего электротока, достигающих тысяч ампер, магнитное дутье проявляется незначительно.

Причины отклонения дуги

Особую трудность создает эффект при работе с угловыми и стыковыми швами. Для определения степени намагниченности конструкции применяют — индикатор магнитного дутья

Виды сварки

Сварочные аппараты имеют блок выпрямительных диодов. Что создает постоянный ток, это обязательное условие для сварочных полуавтоматических аппаратов, для которых материалом является проволока. Если для аппарата требуются электроды, то это обозначает возможность использования во время работы всех их моделей. А полярность во время сварки – это залог ее качества.

Используя полуавтомат, надо соблюдать полярность подсоединения. Сварка под газовой защитой омедненной проволокой происходит с помощью полярности прямого тока. Фактически это значит:

  • на деталь идет плюс;
  • на держак идет минус.

Сила тока подается на деталь от проволоки, и она нагревается, в отличие от сварочной проволоки, сильнее. В итоге повышается площадь свариваемого участка. Ему необходим значительный нагрев для образования варочной ванны. Проволока, имеющая меньшее сечение, быстрей плавится и попадает на необходимый участок уже жидкой каплей. Током, который проходит от разных полярностей, увлекается расплавленный материал, получается подходящая ванна для сварки.

Используя полуавтомат без защитной газовой среды, нужно использовать специальную порошковую или флюсовую проволоку. В этом случае изменяется полярность соединения держака и «массы». На «массе» находится минус, а на держаке находится плюс. Температура плавления флюсовой проволоки имеет примерно такое же значение, как и температура плавления металла. Чтобы достичь качественного шва, необходимо, чтобы сгорел флюс. Затем ожидают два таких процесса:

  • Появление газообразного облака;
  • В среде этого облака и происходит сварка.

Сила тока переходит от минуса к плюсу, и падение жидкой капли металла становится более низким. Именно это обуславливает меньший нагрев металла для сварки. Так как его охлаждение не происходит под защитной газа. Поэтому образование ванны для сварки практически не отличается от сварки в газовой среде. Работа переменным током имеет определенные преимущества. Она не расходится с дугой относительно изначальной оси. А на качество соединения воздействует именно отклонение дуги.

Делая сварку генератором с переменным током, легко заметить: его полярность изменяется циклически. Циклы имеют частоту 50 Герц. Она, повысившись до плюсового напряжения, может снизиться до нуля или упасть до отрицательного уровня. Напряжение меняется с плюса на минус и, наоборот.

Сварка нержавейки и цветных металлов

температуру в участке нагрева

Полярность при сварке напрямую способствует образованию:

  • более качественного шва;
  • более лучшего проплавления металла, в том числе и из нержавеющей стали;
  • более концентрированной узкой электрической дуги.

У процесса также существует и немаловажная экономическая часть. Используя дорогой вольфрамовый электрод меньшего диаметра, попутно добиваются уменьшения газовых затрат. Если же подключить вольфрамовый электрод при сварке в другой полярности, а именно, на держателе – с плюсом, то шов будет не таким глубоким. У данного способа есть свои преимущества. Работая с тонкими пластинами, можно не переживать, что вы прожжете насквозь изделие из нержавейки и цветного металла.

Значительным недостатком является эффект электромагнитного дутья. Образующаяся дуга выходит блуждающей, а шов – не сильно привлекательным и герметичным. Используя переменный ток, необходимо использовать электроды для переменки. Опытные сварщики обычно выбирают постоянный ток. Благодаря ему сварка создает однонаправленный проход электронов. Полярность влияет на качество сварочных работ, в том числе материала из нержавеющей стали.

Сварка прямой полярности

Когда подсоединяют электрод

  • на электроде – плюс;
  • на «земле» – минус.

Ток переходит от отрицательного контакта к положительному. Именно поэтому электроны переходят на электрод от металла. В результате сильно нагревается окончание электрода. Для классической сварки эффективно используют плюс – на электроде, а минус – на клемме. При прямой полярности сварки предполагается минус – на электроде, плюс – на «земле». Ток перемещается от электрода к изделию. Электрод – холодный, а изделие – горячее. Эта особенность широко используется в особых электродах, которые предназначены для быстрой сварки листов нержавеющей стали.

Ответы знатоков

Елена:

Магнитное дутье и меры борьбы с ним

При дуговой сварке происходит отклонение дуги от оси электрода и ее блуждание по изделию, что ухудшает качество сварных швов, увеличивает разбрызгивание и затрудняет процесс сварки. Это явление вызывается действием электромагнитных сил, возникающих при прохождении электрического тока по элементам сварочной цепи при этом основной металл и металл электрода ферромагнитны, что способствует возникновению магнитного поля. Отклонение дуги в поперечном и продольном направлениях от оси электрода под действием электромагнитных сил называют магнитным дутьем (рис. 1).

Рис. 1. Статическая вольт-амперная характеристика сварочной дуги Б¹ Б² и Б³ – дуги различной длины

На проявление магнитного дутья, особенно при сварке постоянным током, влияет увеличение сварочного тока до 300 А и более. Оно вызывается также неравномерным размещением ферромагнитных масс изделий относительно места подсоединения к ним и прохождения сварочного тока (рис. 1, а, б) . Для устранения или уменьшения магнитного дутья изменяют места подсоединения к изделию провода электрического тока так, чтобы уравновесить ферромагнитные массы изделия, расположенные относительно места подсоединения провода (рис. 1, в, г) . Если это невозможно выполнить, применяют стальную плиту, которую укладывают на изделия для уравновешивания ферромагнитных масс, или используют для сварки переменный ток, при котором магнитное дутье проявляется слабо.

Ol_Tim:

otvet.mail /answer/242837398/

Евгений Бухаринов:

В камере гашения дуги контактора? Последовательно с неподвижным контактом включена катушка (1-3 витка) . Её витки расположены так, что при размыкании контактов дуга (а это провод с током, только воздушный) выбрасывается в камеру. Магнитное поле дуги и поле катушки отталкиваются друг от друга.

Владимир:

Магнитное дутьё-это воздействие на сварочную дугу магнитным полем при взаимодействии магнитного поля изделия и магнитного поля электрода, которое приводит к отклонению дуги от оси электрода и от зоны сварки. Это явление присуще сварке на постоянном токе и становиться заметным при сварочном токе более 150 А, а при повышенном сварочном токе оказывает большое воздействие и отклоняет дугу от оси электродов в сторону более близких к дуге ферромагнитных масс, так как эти массы имеют меньшее сопротивление для замыкания магнитного потока (поля) , чем воздух.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации