Андрей Смирнов
Время чтения: ~15 мин.
Просмотров: 3

Расчет скорости шкивов ременной передачи калькулятор. расчёт клиноременной передачи

Калькулятор передаточных чисел кпп

Расчет передаточных чисел трансмиссии начинают с расчета передаточного числа на первой и высшей передачах. Номер высшей передачи зависит от того, сколько ступеней предполагается у коробки передач проектируемого автомобиля (три, четыре, пять. ). Передаточное число первой передачи должно обеспечивать преодоление наибольшего дорожного сопротивления движению автомобиля. В этом случае значения касательного усилия, исходя из подведенного крутящего момента двигателя при Мkmax, желательно иметь равным максимальному касательному усилию по сцеплению, т.е.

, (10)

где iтр1,тр1— соответственно передаточное число и КПД на первой передаче;

к— коэффициент нагрузки ведущих колес; для 4х2к = 0,70. 0,75; для 4х4к = 1,0;

rк— динамический радиус ведущих колес, м;

Ма— полная масса автомобиля;

g- ускорение свободного падения;

 — максимальное значение коэффициента сцепления (принимается в пределах 0,7. 0,8).

Рис. 1. Внешняя скоростная характеристика карбюраторного двигателя

Калькулятор кпп и главной пары: расчет максимальной скорости движения автомобиля по передаточным числам

Привет друзья! Более года ничего не писал в свой блог, но сегодня что-то пошло не так … Не туда забрел, не там почитал, и пришло вдохновение, желание двигаться вперед.

Это будет не информационный пост как обычно, а некий мануал, калькулятор, который в зависимости от заданных типоразмеров шин, оборотов мотора и указанных передаточных чисел коробки рассчитает, какая будет скорость движения у автомобиля на передачи.

Конечно, калькулятор скорости автомобиля по передаточным числам и шинам производит расчет в идеальных (лабораторных) условиях. В реальных же условиях на конечную скорость автомобиля влияет очень много факторов, начиная от климатических условий и состояния дорожного полотна, и заканчивая настройкой мотора. Другими словами, калькулятор показывает потенциал коробки передач, до какой максимальной скорости она способна разогнать автомобиль.

Прогноз максимальной скорости движения авто на передаче:

1я передача:23.68км/ч24.43км/ч
2я передача:36.34км/ч41.52км/ч
3я передача:52.47км/ч58.01км/ч
4я передача:69.1км/ч73.3км/ч
5я передача:90.21км/ч93.04км/ч
6я передача:неткм/чнеткм/ч

*Для сликов маркированных в дюймах вводите только R колеса (вводить ширину и профиль не надо).

По умолчанию в калькуляторе расчета передаточных чисел КПП указаны характеристики коробок S4C (КПП #1) и S9B (КПП #2). Выбрал эти коробки не случайно, т.к. первая устанавливалась на Civic EK9, а вторая считается самой длинной МКПП для Б-моторов.

Размеры шин, количество оборотов двигателя, передаточные числа КПП и главную пару Вы можете подставлять на свое усмотрение. Калькулятором представляет собой универсальное средство, поэтому не стоит зацикливаться, что он работает только на КПП предназначенных для Хонды. Коробку ВАЗ’ика он тоже рассчитает без проблем

Внимание ! Калькулятор КПП и максимальной скорости движения автомобиля предоставлен исключительно в ознакомительных целях и не гарантирует 100% достоверных данных!

На форуме есть несколько тем, посвященных Honda коробкам, из которых Вы можете узнать передаточные числа для калькулятора. Информация еще не полная, но со временем, усилиями сообщества обновим топики и сделаем полную подборку характеристик:

— КПП и передаточные числа для моторов B серии;- КПП и передаточные числа для моторов K серии;- КПП и передаточные числа для моторов H серии;- КПП и передаточные числа для моторов F серии.-

В завершении поста, хочу заметить, что при установке на автомобиль дисков большего диаметра или шин отличных от стокового типоразмера, спидометр будет выдавать не совсем корректные данные. Единицы отдают его на калибровку, чтобы снимать точные показания, в 99.999% случаев автовладельцы оставляют все как есть. Чтобы узнать, насколько спидометр «обманывает» Вас, в блоге есть еще один полезный инструмент:

— Калькулятор погрешности спидометра.

Спасибо за внимание и отдельный респект всем тем, кто поделился ссылкой на пост

Продолжение следует …

P.S. По давней традиции, не забывайте подписываться на обновления проекта и нашего паблика ВКонтакте, рассказывать друзьям о проекте, делиться в сети ссылками на интересные посты, оставлять развернутые комментарии по теме, делать ретвиты, ставить лайки, нажимать на «мне нравится», добавлять посты в гугл плюс и … И конечно же, САМОЕ-САМОЕ ГЛАВНОЕ — приглашаю всех на форум любителей хонда !!! С момента последнего поста много чего изменилось и форум тоже. Жду всех на форуме

Таблица рядов и главных пар КПП Ваз 2108-2110-1118-2170

Таблица расчета рядов и главных пар в КПП переднеприводного ВАЗ.

Позволяет подобрать ряд и главную пару под условия эксплуатации автомобиля, что существенно снизит нагрузку на двигатель и продлит его ресурс до капитального ремонта. Подобрав нужную комплектацию, используйте программу для перевода цифр в наглядные графики.

Номер набора

Номер передач

1

2

3

4

5

6

Серийный ряд

40/113.64

39/201.95

38/281.36

32/340.94

29/370.78

27/390.69

08 ряд

41/123.42

39/192.05

серийная

32.330.97

05 ряд

38/132.92

38/211/81

37/291.28

33/340.97

11 ряд

серийная

40/182.22

40/261.54

35/301.17

31/350.89

12 ряд

38/123.17

серийная

серийная

33/321.03

18 ряд

38/123.17

40/192.11

40/271.48

35/311.13

31/350.89

06 ряд

38/132.92

38/211.81

37/291/28

34/321.06

32/340.94

29/370.78

07 ряд

38/132.92

39/192.05

28/181.56

38/291.31

35/311.13

32/340.94

026 ряд

41/123.42

38/152.53

35/172.06

33/191.74

34/231.48

33/261.27

074 ряд

38/122.667

29/151.933

27/171.588

26/191.368

Таблица главных пар КПП 2108.

Кол-во зубьев

63/17

62/15

65/15

63/14

66/14

64/13

69/13

Главная пара

 3.7

 4.13

 4.33

 4.5

 4.71

 5.08

 5.31

Скорость автомобиля при 5000 оборотов в минуту.

(Колеса: ширина 185 , профиль 60, R диска 14)

Серийная КПП

1 перед         3,64  40/11

2 перед

1,95 39/20

3 перед

1,35  38/28

4 перед

0,94  32/34

5 перед

0,78  29/37

6 перед

0,69  27/39

3,7

40

74

106

154

184

209

3,9

38

70

101

145

174

198

4,1

36

67

96

139

166

188

4,3

34

64

92

132

159

180

05 ряд

2,92  38/13

1,81  38/21

1,2737/29

0,96  32/33

0,78  29/37

0,69  27/39

3,7

50

80

114

149

184

209

3,9

47

76

108

141

174

198

4,1

45

72

102

134

166

188

4,3

43

69

98

128

159

180

06 ряд

2,92  38/13

1,81  38/21

1,2737/29

1,06  34/32

0,94  32/34

0,78  29/37

3,7

50

80

114

136

154

184

3,9

47

76

108

129

145

174

4,1

45

72

102

122

139

166

4,3

43

69

98

117

132

159

07 ряд

2,92  38/13

2,05  39/19

1,56  28/18

1,31  28/29

1,13  35/31

0,94  32/34

3,7

50

70

93

110

128

154

3,9

47

67

88

105

121

145

4,1

45

63

84

100

116

139

4,3

43

61

80

95

110

132

08 ряд

3,42  41/12

2,11  40/19

1,35  38/28

0,96  32/33

0,78  29/37

0,69  27/39

3,7

42

69

106

149

184

209

3,9

40

65

101

141

174

198

4,1

38

62

96

134

166

188

4,3

36

59

92

128

159

180

11 ряд

3,64  40/11

2,22  40/18

1,54  40/26

1,17  35/30

0,87  31/35

0,78  29/37

3,7

40

65

94

124

163

184

3,9

38

62

89

117

155

174

4,1

36

59

85

112

147

166

4,3

34

56

81

107

140

159

12 ряд

3,17  38/12

1,95  39/20

1,35  38/28

1,03  33/32

0,78  29/37

0,69  27/39

3,7

46

74

106

140

184

209

3,9

43

70

101

133

174

198

4,1

41

67

96

126

166

188

4,3

39

64

92

119

159

180

18 ряд

3,17  38/12

2,11  40/19

1,48  40/27

1,13  35/31

0,87  31/35

0,78  29/37

3,7

46

69

98

128

163

184

3,9

43

65

92

121

155

174

4,1

41

62

88

116

147

166

4,3

39

59

84

110

140

159

200 ряд

2,92  38/13

2,22  40/18

1,76  37/21

1,39  39/28

1,17  35/30

0,94  32/34

3,7

50

65

82

104

124

154

3,9

47

62

78

99

117

145

4,1

45

59

73

93

112

139

4,3

43

56

71

89

107

132

102 ряд

3,17  38/12

1,95  39/20

1,35  38/28

0,94  32/34

0,73

3,7

46

74

106

154

196

3,9

43

70

101

145

188

4,1

41

67

96

139

178

4,3

39

64

92

132

170

103 ряд

2,92  38/13

1,95  39/20

1,35  38/28

0,94  32/34

0,69  27/39

3,7

50

74

106

154

209

3,9

47

70

101

145

198

4,1

45

67

96

139

188

4,3

43

64

92

132

180

104 ряд

2,92  38/13

1,95  39/20

1,35  38/28

1,03  33/32

0,73

3,7

50

74

106

140

196

3,9

47

70

101

133

188

4,1

45

67

96

126

178

4,3

43

64

92

119

170

111 ряд

3,1738/12

2,22   40/18

1,54   40/26

1,17  35/30

0,81   3/37

           3,7

             46

           65

           94

          124

          184

           3,9

             43

           62

           89

          117

          175

           4,1

             41

           59

           85

          112

          166

           4,3

             39

           56

           81

          107

          158

Шестая передача девяти видов:

1)     0,78 / 0,69; стандарт                   

2)     0,87 / 0,78    к 18 ряду

3)     0,87 / 0,73    к 18 ряду Тюн

4)     1,13 / 0,94    к 7 ряду

5)     0,94 / 0,78     к 6 ряду

6)     1,17 / 0,94    к 200 ряду

7)  1.13 / 0,78  к 7 тюн

8)  1.17/0,78  к 200 тюн

9)  0,87/ 0,69 к 18 тюн

10) 

Примечание:

Главная пара 4.1 — разгружает двигатель, мотору легче крутить колеса, повышается динамика машины, передачи укорачиваются, максимальная скорость падает ~ на 20км/ч ( при 160 км/ч. обороты тахометра 5 тыс.), расход топлива + 1л. ( за счет изменения езды).

Главная пара 4.3 -тоже, что и 4.1 + 5км/ч на всех передачах.

Гл. пара 4.1 или 4.3 + спортивный ряд (06, 07 или 08-й): динамика (быстрый разгон за счет гл. пары) + длинные передачи, в основном 1-я и 2-ая раскручиваются по максимуму.

Гл. пары 4.5 и 4.7: передачи еще короче, чем 4.1 и 4.3 ( максимальная скорость при 5 тыс. оборотов тахометра 140км/ч. ), рекомендуемое использование: при буксировке и перевозке тяжелых прицепов.

Гл. пары 4.9, 5.1, 5.3 и 5.07: используются только на крутых склонах-подъемах ( максимальная скорость 110-120 км/ч.)

Ряды: 011, 012, 018- устанавливаются со стандартной гл. парой 3.9 под форсированные двигателя 1.7, 1.8 и 2.0л.

Понравился материал? Поделись ссылкой с друзьями…

Трансмиссия / Сделай сам / Автошкола

+11

Выбираем тип редуктора

Для того, чтобы определиться с типом редуктора, нужно рассмотреть пространственное расположение всех механизмов, которые присоединяются к редуктору, их места креплений и способы монтажа.

  1. Цилиндрические редукторы:
    • Горизонтальный тип такого редуктора подходит для схем, в которых оси входного и выходного валов между собой параллельны и при этом находятся в одной плоскости (а именно, горизонтальной);
  2. У вертикального цилиндрического типа оси редуктора должны располагаться в одной вертикальной плоскости;
  3. Планетарный или соосный цилиндрический тип используется в том случае, если оси валов находятся в разных плоскостях, но при этом расположены на одной прямой.
  4. Коническо-цилиндрические редукторы применяются только для тех схем, где оси валов находятся в одной плоскости (горизонтальной) и перпендикулярны друг другу.
  5. Червячные редукторы:
    • Оси одноступенчатого червячного редуктора должны скрещиваться под прямым углом и лежать в разных плоскостях;
  6. У двухступенчатого червячного редуктора оси валов пересекаются под прямым углом или параллельны друг другу, но при этом обязательно лежат в разных плоскостях.

Более того, в зависимости от области применения редуктора могут оказать влияние такие факторы, как:

  • Громкость работы (самый «тихий» — червячный редуктор);
  • КПД или коэффициент полезного действия (самые эффективные в плане работы считаются планетарные редукторы, в то время как у двухступенчатых червячных редукторов КПД самый низкий);
  • Стоимость в относительном эквиваленте (планетарные редукторы считаются самыми недорогими).

Также, производя расчет червячного редуктора, следует учитывать тот факт, что его использование в большей мере оправдано при повторяющихся кратковременных режимах эксплуатации.

Применение шкивов

Клиновые приводы – одни из самых широко используемых в самых различных механизмах и устройствах с высоким крутящим моментом и угловой скоростью. Прежде всего- это двигатели внутреннего сгорания. Кроме того, клиноременные пары применяются в таких областях, как:

  • вентиляторы и кондиционеры;
  • компрессорные установки, как поршневых, так и винтовых;
  • транспортные системы зданий: лифты, эскалаторы, травелаторы;
  • сельхозмашины;
  • дорожно-строительная техника;
  • горные машины;
  • промышленные технологические установки;
  • станки;
  • бытовая техника;
  • ручной электроинструмент;

и во многих других отраслях.

Зубчатые передачи используются в тех случаях, когда требуется передать значительный крутящий момент без пробуксовок. Зубчатоременной привод не требует сильного натяжения для хорошего сцепления. Он дает существенно меньшую радиальную нагрузку на ось, чем другие ременные передачи.

Применяются такие приводы в:

  • автомобильных моторах, для механизма газораспределения;
  • силовых приводах станков и промышленных механизмов;
  • в технологических установках пищевой, фармацевтической, химической отрасли.

Поликлиновые шкивы отлично справляются в так называемых серпантинных передачах, когда один привод снабжает энергией вращения много потребителей, и при этом следует по весьма извилистой траектории. Поликлиновые передачи позволяют передавать значительные моменты и достигать больших оборотов без увеличения габаритов.

Их используют как в тяжелом машиностроении, так и в производстве бытовой техники.

Вариаторные приводные колеса применяются везде, где необходимо без остановки вращения и снятия нагрузки плавно изменять обороты и крутящий момент. Они популярны в таких сферах, как:

  • трансмиссии автомобилей, мотоциклов, другого колесного транспорта;
  • конвейеры;
  • точные станки для обработки металла, дерева и других материалов;
  • сельхозмашины.

Современный вариатор превосходит по своим эксплуатационным характеристикам и ручные, и гидравлические трансмиссии.

Плоскоременные приводы используются там, где требуется передать вращение на значительные расстояния (до 7-9 м) и погасить удары, толчки и другие динамические нагрузки, передаваемые от ведущего вала к ведомому (или в обратном направлении). Они применяются:

  • в прессовом и другом кузнечном оборудовании;
  • в приводах лесопилок;
  • в технологическом оборудовании текстильной промышленности;
  • в мощных центробежных насосах.

Круглоременные приводы используются для малонагруженных передач в точных приборах, бытовой электронике и технике.

Они также легко перекрещиваются и, при посредстве дополнительных пассивных шкивов позволяют связывать ведомый и ведущий валы, находящиеся в разных плоскостях и под углом друг к другу, а также изменять направление вращения.

5.4 Подбор подшипников

Для быстроходного вала шестерни выбираем роликовые конические
однорядные подшипники серии 7306 схема расположения врастяжку. (d=30; D=72; T=21; Cr=40 кН; Cr=29.9 кН)

Для тихоходного вала колеса выбираем роликовые конические
однорядные подшипники серии 7507 схема расположения враспор. (d=35; D=72; Т=24.5; Cr=53 кН; Cr=40 кН)

Предварительные размеры валов

Вал

материал: Сталь 45,

σВ=890 Н/мм2;

σТ=650 Н/мм2

σ-1=380 Н/мм2

Размеры ступней, ммПодшипники

d1

d2

d3

d4

ТипоразмерdxDxB(T), мм

Динамическая грузоподъемность Cr,
кН

Статическая грузоподъемность Cr, кН

l1

l2

l3

l4

Быстроходный20243730730630x72x214029.9
3615
Тихоходный30354535750735x72x24,55340
404526

6.

Tр=T∙K=30∙2=60 Н∙м

К=2 – коэффициент режима нагрузки

Выбираем упругую муфту со звездочкой. (ГОСТ 21425-93).
Диаметр отверстия 24 мм.

T=63 Н∙м

Радиальная сила, с которой муфта действует на вал:

где сr=800 Н/мм из таблицы 10.28 (d=24 мм).

Крутящий момент редуктора

Крутящий момент на выходном валу – вращающий момент на выходном валу. Учитывается номинальная мощность , коэффициент безопасности , расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.

Номинальный крутящий момент – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.

Максимальный вращающий момент – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.

Необходимый крутящий момент – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.

Расчетный крутящий момент – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:

Mc2 = Mr2 x Sf ≤ Mn2

где Mr2 – необходимый крутящий момент; Sf – сервис-фактор (эксплуатационный коэффициент); Mn2 – номинальный крутящий момент.

8.1 Расчетная схема быстроходного вала

Определение реакций в подшипниках

Построение эпюр изгибающих и крутящих моментов (быстроходный
вал)

1. Вертикальная плоскость

а) определяем опорные реакции

;

;

б) Строим эпюру изгибающих моментов относительно оси X

MA=0; MB=0; MC=RBY∙lБ; MD=RBY∙(lБ+l1)+RCY∙l1; MD=Fa1∙d1/2

2. Вертикальная плоскость

а) определяем опорные реакции

;

;;

б) Строим эпюру изгибающих моментов относительно оси Y

MA=0; MB=-FM∙lM; MC=-FM∙(lM+lБ)+RBX∙lБ; MC=Ft1∙lБ; MD=0

3. Строим эпюру крутящих моментов

4. Суммарные радиальные реакции

5. Суммарные изгибающие моменты в наиболее нагруженных
сечениях

Проверка прочности валов

Сечение В

материал вала: Сталь 45 (σ-1=380 Н/мм2
τ-1=220.4 Н/мм2 ) d=30 мм;

а) нормальные напряжения

 

б) касательные напряжения

 

в) коэффициент концентрирования нормальных и касательных
напряжений

Kσ и Kτ – эффективные коэффициенты
концентрации напряжений

Kd – коэффициент влияния абсолютного
размера поперечного сечения

по таблице 11.2 (посадка с натягом) выбираем

;

KF – коэффициент влияния шероховатости по
таблице 11.4 KF=1.40

г) предел выносливости в расчетном сечении вала

д) коэффициент запаса прочности

е) общий коэффициент запаса прочности

Сечение С

материал вала: Сталь 45 (σ-1=390 Н/мм2
τ-1=220.4 Н/мм2 ) d=30 мм;

а) нормальные напряжения

б) касательные напряжения

в) коэффициент концентрирования нормальных и касательных
напряжений

Kσ и Kτ – эффективные коэффициенты
концентрации напряжений

Kd – коэффициент влияния абсолютного
размера поперечного сечения

по таблице 11.2 (посадка с натягом) выбираем ;

KF – коэффициент влияния шероховатости по
таблице 11.4 KF=1.40

г) предел выносливости в расчетном сечении вала

д) коэффициент запаса прочности

е) общий коэффициент запаса прочности

Сечение D

материал вала: Сталь 45 (σ-1=390 Н/мм2
τ-1=220.4 Н/мм2 ) d=33.64 мм;

а) нормальные напряжения

б) касательные напряжения

в) коэффициент концентрирования нормальных и касательных
напряжений

Kσ и Kτ – эффективные коэффициенты
концентрации напряжений

Kd – коэффициент влияния абсолютного
размера поперечного сечения

по таблице 11.2 выбираем Kσ=1.7 Kτ=1.55

по таблице 11.3 выбираем Kd=0.87 для (Kσ)D; Kd=0.76 для (Kτ)D

KF – коэффициент влияния шероховатости по
таблице 11.4 KF=1.40

г) предел выносливости в расчетном сечении вала

д) коэффициент запаса прочности

е) общий коэффициент запаса прочности

Онлайн расчеты :: SS20 Sport Club

Исходные данные

3.53.73.94.14.34.54.74.95.1

2.92 (5-й ряд)2.92 (6-й ряд) 2.92 (7-й ряд)3.42 (8-й ряд)3.42 (10-й ряд)3.63 (станд.)3.63 (11-й ряд)3.16 (12-й ряд)3.17 (15-й ряд)3.17 (18-й ряд)3.17 (20-й ряд)3.17 (102-й ряд)2.92 (103-й ряд)2.92 (104-й ряд)2.92 (200-й ряд)3.0 (026-й ряд)3.0 (711-й ряд)2.67 (745-й ряд)2.67 (74-й ряд)

1.81 (5-й ряд)1.81 (6-й ряд)2.05 (7-й ряд)2.05 (8-й ряд)2.05 (10-й ряд)2.22 (11-й ряд)1.95 (станд.)1.95 (12-й ряд)1.81 (15-й ряд)2.11 (18-й ряд)1.9 (20-й ряд)1.95 (102-й ряд)1.95 (103-й ряд)1.95 (104-й ряд)2.22 (200-й ряд)2.53 (026-й ряд) 2.53 (711-й ряд) 1.93 (745-й ряд)1.93 (74-й ряд)

1.28 (5-й ряд)1.28 (6-й ряд)1.56 (7-й ряд)1.36 (станд.)1.36 (8-й ряд)1.36 (10-й ряд)1.54 (11-й ряд)1.36 (12-й ряд)1.28 (15-й ряд)1.48 (18-й ряд)1.26 (20-й ряд)1.36 (102-й ряд)1.36 (103-й ряд)1.36 (104-й ряд)1.76 (200-й ряд)2.06 (026-й ряд)2.06 (711-й ряд)2.06 (45-й ряд)1.56 (74-й ряд)

0.94 (станд.)0.97 (5-й ряд)1.06 (6-й ряд)1.31 (7-й ряд)0.97 (8-й ряд)0.97 (10-й ряд)1.17 (11-й ряд)1.03 (12-й ряд)0.94 (15-й ряд)1.13 (18-й ряд)0.94 (20-й ряд)0.94 (102-й ряд)0.94 (103-й ряд)1.03 (104-й ряд)1.39 (200-й ряд)1.74 (026-й ряд)1.74 (711-й ряд)1.37 (745-й ряд)1.37 (74-й ряд)

0.78 (станд.)0.78 (5-й ряд)0.94 (6-й ряд)1.13 (7-й ряд)0.78 (8-й ряд)0.78 (10-й ряд)0.89 (11-й ряд)0.78 (12-й ряд)0.73 (15-й ряд)0.89 (18-й ряд)0.73 (20-й ряд)0.73 (102-й ряд)0.69 (103-й ряд)0.73 (104-й ряд)1.17 (200-й ряд)1.48 (026-й ряд)1.48 (711-й ряд)1.2 (745-й ряд)0.79 (74-й ряд)

нет0.69 (станд.)0.94 (7-й ряд)0.78 (18-й ряд)0.94 (200-й ряд)

Рассчитать

Расчет диаметра шкива

Вначале следует определить передаточное число, исходя из заложенной скорости вращения ведущего вала n1 и потребной скорости вращения ведомого вала n2/ Оно будет равно:

i=n1/n2

Если уже имеется в наличии готовый двигатель с приводным колесом, расчет диаметра шкива по передаточному отношению i проводится по формуле:

D2= D1/i.

Если же механизм проектируется с нуля, то теоретически подойдет любая пара приводных колес, удовлетворяющих условию:

D2/D1=n2/n1

На практике расчет ведущего колеса проводят, исходя из:

  • Размеров и конструкции ведущего вала. Деталь должна надежно крепится на валу, соответствовать ему по размету внутреннего отверстия, способу посадки, крепления. Предельно минимальный диаметр шкива обычно берется из соотношения Dрасч ≥ 2,5 Dвн
  • Допустимых габаритов передачи. При проектировании механизмов требуется уложиться в габаритные размеры. При этом учитывается также межосевое расстояние. чем оно меньше, тем сильнее сгибается ремень при обтекании обода и тем больше он изнашивается. Слишком большое расстояние приводит к возбуждению продольных колебаний. Расстояние также уточняют, исходя из длины ремня. Если не планируется изготовление уникальной детали, то длину выбирают из стандартного ряда.
  • Передаваемой мощности. Материал детали должен выдержать угловые нагрузки. Это актуально для больших мощностей и крутящих моментов.

Окончательный расчет диаметра окончательно уточняют по результату габаритных и мощностных оценок.

Сообщений 1 страница 12 из 12

Поделиться114 января, 2011г. 23:27:56

Ссылка: https://4×4.lviv.ua/?calculator=tuning Модераторы поправьте пожалуйста если не правильно вставил ссылку,просто не понял как это сделать .Спасибо.

Поделиться215 января, 2011г. 09:20:50

Миха150 Спасибо , ссылка хорошая, есть одно но – не подойдет для трактора с приводом только на задние колеса (или только на передние).

Поделиться315 января, 2011г. 09:55:04

Тоже скачал и посмотрел. Не силен я в програмировании, но думаю можно изменить параметры и сделать для одного моста. Или связаться с авторами, дабы сами они сменили, чтобы не-было нарушений

Поделиться415 января, 2011г. 20:29:56

Все подходит я на нем считал полный привод.Очень удобно особенно полноприводный с разными диаметрами колес,в левую колонку забиваеш данные по размерам резины и методом подбора передаточные ГП.Пример:в правую колонку резина в мм 20575R16 и значение ГП УАЗ 5.125 в левую 16580R12 подбираем ГП переднего моста из стандартных ВАЗ у меня получилось 4.1 при этом в графе скорость до и после тюнинга получил одинаковые значения.Так же удобно подбирать скорость . в бщем там все понятно не удобно одно т.к в большинстве случаев приходится ставить 2кпп передаточные числа приходится суммировать на калькуляторе или при помощи карандаша и бумаги,но это кому как нравится.

Отредактировано Миха150 (15 января, 2011г. 20:39:32)

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации