Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Конусность и уклон: построение, расчет, обозначение

Теорема Пифагора

Теорема основана на утверждении, что у прямоугольного треугольника сумма квадратов длин катетов равна
квадрату длины гипотенузы
. В виде формулы записывается это так:

a²+b²=c²

Стороны a и b — катеты, между которыми угол равен ровно 90 градусов. Следовательно, сторона c — гипотенуза.
Подставляя в эту формулу две известные величины, мы можем вычислить третью, неизвестную. А следовательно можем
размечать прямые углы, а также проверять их.

Теорема Пифагора известна еще под названием «египетский треугольник»

Это треугольник со сторонами 3, 4 и 5,
причем совершенно не важно, в каких единицах длинны. Между сторонами 3 и 4 — ровно девяносто градусов

Проверим
данное утверждение вышеприведенной формулой: a²+b²=c² = (3×3)+(4×4) = 9+16 = (5×5) = 25 — все
сходится!

А теперь применим теорему на практике.

Как разметить острый угол

Гораздо реже возникает надобность в создании острых углов, в частности 45°. Для формирования подобных
фигур формулы более сложные, однако это не самое проблематичное. Гораздо сложнее свести все линии, начерченные
или натянутые шнурами — дело это непростое. Поэтому я предлагаю использовать упрощенный метод. Сначала размечается
прямой угол 90°, а затем диагональ 141,4 делится на нужное количество равных частей. Например, чтобы получить
45°, диагональ нужно поделить пополам и от точки А провести линию через место деления. Таким образом мы получим
два угла по 45 градусов. Если поделить диагональ на 3 части, то получится три угла по 30 градусов. Думаю алгоритм
вам понятен.

Собственно я рассказал все, что мог рассказать, надеюсь все изложил понятным языком и у вас больше не возникнет
вопросов как размечать и проверять прямые углы. Стоит добавить, что уметь делать это должен любой отделочник или
строитель, ведь полагаться на строительный угольник небольшого размера — непрофессионально.

Оцените публикацию:

  • Currently 4.38

Оценка: 4.4 (65 голосов)

Обозначение углов

«∠», обозначение угла в геометрии.

Для обозначения угла имеется общепринятый символ: ∠,{\displaystyle \angle ,} предложенный в 1634 году французским математиком Пьером Эригоном.

В математических выражениях углы часто обозначают строчными греческими буквами: α, β, γ, θ, φ и др. Как правило, данные обозначения также наносятся на чертёж для устранения неоднозначности в выборе внутренней области угла. Чтобы избежать путаницы с числом пи, символ π, как правило, для этой цели не используется. Для обозначения телесных углов (см. ниже) часто применяют буквы ω и Ω.

Также часто угол обозначают тремя символами точек, например ∠ABC.{\displaystyle \angle ABC.} В такой записи B{\displaystyle B} — вершина, а A{\displaystyle A} и C{\displaystyle C} — точки, лежащие на разных сторонах угла. В связи с выбором в математике направления отсчёта углов против часовой стрелки, точки, лежащие на сторонах в обозначении угла принято перечислять также против часовой стрелки. Это соглашение позволяет обеспечить однозначность при различении двух плоских углов с общими сторонами, но различными внутренними областями. В тех случаях, когда выбор внутренней области плоского угла ясен из контекста, либо указывается другим способом, данное соглашение может нарушаться.
См. .

Реже используются обозначения прямых, образующих стороны угла. Например, ∠(bc){\displaystyle \angle (bc)} — здесь предполагается, что имеется в виду внутренний угол треугольника ∠BAC{\displaystyle \angle BAC}, α, который надо было бы обозначить ∠(cb){\displaystyle \angle (cb)}.

Так, для рисунка справа записи γ, ∠ACB{\displaystyle \angle ACB} и ∠(ba){\displaystyle \angle (ba)} означают один и тот же угол.

Иногда для обозначения углов используются строчные латинские буквы (a, b, c, …) и цифры.

На чертежах углы отмечаются небольшими одинарными, двойными или тройными дужками, проходящими по внутренней области угла с центрами в вершине угла. Равенство углов может отмечаться одинаковой кратностью дужек или одинаковым количеством поперечных штрихов на дужке. Если необходимо указать направление отсчёта угла, оно отмечается стрелкой на дужке. Прямые углы отмечаются не дужками, а двумя соединёнными равными отрезками, расположенными таким образом, что вместе со сторонами они образуют небольшой квадрат, одна из вершин которого совпадает с вершиной угла.

Советы

Прогресс не стоит на месте, каждый год производители мебели выпускают в свет всё новые и новые модели мебели для отдыха и сна. Интересным вариантом стала модель, в которой можно самому выбирать угол и без проблем его менять при желании. Такие диваны имеют простую форму и, в своём большинстве, съёмные подлокотники. Любителям время от времени менять интерьер своей квартиры такая мебель придётся как нельзя кстати.

Но и со стандартным Г-образным диваном можно менять обстановку, устанавливая его не так, как того требуют правила. Его можно расположить длинной стороной вдоль стены, а короткой – выступающей по центру комнаты. Такое расположение вносит изюминку в интерьер по сравнению с привычной установкой в углу помещения.

Установка по центру короткой стороной к стене, а длинной – поперёк комнаты зонирует пространство, визуально делит его на две небольшие комнаты. Такое расположение подходит для комнат-студий. Одну часть помещения можно использовать как гостиную или спальню, вторую – как кухню.

Модели с универсальными углами хороши для больших помещений. Благодаря своим размерам могут служить местом посиделок для больших компаний. Идеально, если такой диван имеет облицованные деревянные поверхности, которые удобно использовать в качестве стола.

Современные модели угловых диванов позволяют обустроить любое помещение. Главное – учесть при выборе все факторы и нюансы. И тогда удобная и функциональная мебель будет радовать своих хозяев на протяжении долгого времени.

Диван Мебель

Сравнение углов.

В этом пункте статьи мы разберемся с определениями равных и неравных углов, а также в случае неравных углов разъясним, какой угол считается большим, а какой меньшим.

Напомним, что две геометрические фигуры называются равными, если их можно совместить наложением.

Пусть нам даны два угла. Приведем рассуждения, которые помогут нам получить ответ на вопрос: «Равны эти два угла или нет»?

Очевидно, что мы всегда можем совместить вершины двух углов, а также одну сторону первого угла с любой из сторон второго угла. Совместим сторону первого угла с той стороной второго угла, чтобы оставшиеся стороны углов оказались по одну сторону от прямой, на которой лежат совмещенные стороны углов. Тогда, если две другие стороны углов совместятся, то углы называются равными
.

Если же две другие стороны углов не совместятся, то углы называются неравными
, причем меньшим
считается тот угол, который составляет часть другого (большим
является тот угол, который полностью содержит другой угол).

Очевидно, что два развернутых угла равны. Также очевидно, что развернутый угол больше любого неразвернутого угла.

Шаги

Метод 1 из 2:

Использование центрального угла, измеренного в градусах

  1. 1

    Запишите формулу для вычисления длины дуги. Формула: L=2π(r)(θ360){\displaystyle L=2\pi (r)({\frac {\theta }{360}})}, где r{\displaystyle r} – радиус окружности, θ{\displaystyle \theta } – центральный угол, измеренный в градусах.
    X
    Источник информации

  2. 2

    В формулу подставьте радиус окружности. Как правило, значение радиуса дается в задаче; в противном случае просто измерьте его. Значение радиуса подставляется вместо r{\displaystyle r}

    Например, если радиус окружности равен 10 см, формула запишется так: L=2π(10)(θ360){\displaystyle L=2\pi (10)({\frac {\theta }{360}})}.

    .

  3. 3

    В формулу подставьте центральный угол. Как правило, значение центрального угла дается в задаче; в противном случае просто измерьте его. В указанную формулу подставьте центральный угол, измеренный в градусах (а не в радианах). Значение центрального угла подставляется вместо θ{\displaystyle \theta }

    Например, если центральный угол равен 135 градусов, формула запишется так: L=2π(10)(135360){\displaystyle L=2\pi (10)({\frac {135}{360}})}.

    .

  4. 4

    Радиус умножьте на {\displaystyle 2\pi }. Если нет калькулятора, воспользуйтесь следующим приблизительным значением: π=3,14{\displaystyle \pi =3,14}. Перепишите формулу, подставив в нее полученное значение, которое равно длине окружности.
    X
    Источник информации

    Например:2π(10)(135360){\displaystyle 2\pi (10)({\frac {135}{360}})}2(3,14)(10)(135360){\displaystyle 2(3,14)(10)({\frac {135}{360}})}(62,8)(135360){\displaystyle (62,8)({\frac {135}{360}})}

  5. 5

    Разделите центральный угол на 360.

    Например:(62,8)(135360){\displaystyle (62,8)({\frac {135}{360}})}(62,8)(0,375){\displaystyle (62,8)(0,375)}

    Так как в круге 360 градусов, это вычисление позволит определить, какую часть круга представляет сектор. Благодаря полученной информацию можно найти часть окружности, которую представляет дуга.

  6. 6

    Перемножьте два числа.

    Например:(62,8)(0,375){\displaystyle (62,8)(0,375)}23,55{\displaystyle 23,55}Таким образом, если радиус окружности равен 10 см, а центральный угол равен 135 градусов, длина дуги приблизительно равна 23,55 см.

    Получится длина дуги.

Метод 2 из 2:

Использование центрального угла, измеренного в радианах

  1. 1

    Запишите формулу для вычисления длины дуги. Формула: L=θ(r){\displaystyle L=\theta (r)}, где r{\displaystyle r} – радиус окружности, θ{\displaystyle \theta } – центральный угол, измеренный в радианах.
    X
    Источник информации

  2. 2

    В формулу подставьте радиус окружности. Чтобы воспользоваться этим методом, нужно знать радиус. Значение радиуса подставляется вместо r{\displaystyle r}

    Например, если радиус окружности равен 10 см, формула запишется так: L=θ(10){\displaystyle L=\theta (10)}.

    .

  3. 3

    В формулу подставьте центральный угол.

    Например, если центральный угол равен 2,36 радиан, формула запишется так: L=2,36(10){\displaystyle L=2,36(10)}.

    В указанную формулу подставляйте центральный угол, измеренный в радианах. Если угол измеряется в градусах, этим методом пользоваться нельзя.

  4. 4

    Умножьте радиус на центральный угол (измеренный в радианах).

    Например: 2,36(10){\displaystyle 2,36(10)}=23,6{\displaystyle =23,6}Таким образом, если радиус окружности равен 10 см, а центральный угол равен 2,36 радиан, длина дуги приблизительно равна 23,6 см.

    Получится длина дуги.

Типы углов

В зависимости от величины углы называются следующим образом.

  • Нулевой угол (0°); стороны нулевого угла совпадают, его внутренняя область — пустое множество.
  • Острый угол (от 0° до 90°, не включая граничные значения).
  • Прямой угол (90°); стороны прямого угла перпендикулярны друг другу.
  • Тупой угол (от 90° до 180°, не включая граничные значения).
  • Косой угол (любой, не равный 0°, 90°, 180° или 270°).
  • Развёрнутый угол (180°); сторонами развёрнутого угла являются две полупрямые одной прямой, то есть два луча, направленных в противоположные стороны.
  • Выпуклый угол (от 0° до 180° включительно).
  • Невыпуклый угол (от 180° до 360°, не включая граничные значения).
  • Полный угол (360°) — см. оборот (единица измерения).

Шаги

Метод 1 из 2:

Измерение угла транспортиром

  1. 1

    Оцените, к какому типу относится интересующий вас угол. Углы можно разделить на три класса: острые, тупые и прямые. Острые углы относительно узки (менее 90 градусов), тупые углы шире (более 90 градусов), а величина прямых углов составляет 90 градусов (их стороны перпендикулярны друг другу).
    X
    Источник информации

    На первый взгляд мы можем сказать, что выше изображен острый угол, то есть его величина меньше 90 градусов.

    Оцените на глаз, к какому типу принадлежит тот угол, который вы собираетесь измерить. Предварительная оценка поможет вам определить необходимый диапазон и правильно выбрать шкалу транспортира.

  2. 2

    Приложите центр транспортира к вершине измеряемого угла.
    X
    Источник информации

    В середине транспортира есть небольшое отверстие. Приложите транспортир к углу так, чтобы это отверстие совпало с вершиной угла.

  3. 3

    Поверните транспортир так, чтобы одна из сторон угла совпала с основанием инструмента. Не спеша поворачивайте транспортир и следите за тем, чтобы вершина угла оставалась в центре. В результате одна из сторон угла должна совместиться с основанием транспортира.
    X
    Источник информации

    При этом вторая сторона угла должна пересекать дугу транспортира (его округлую часть).

  4. 4

    Проследите за второй стороной угла, которая пересекает дугу транспортира. Если вторая сторона не доходит до дуги инструмента, продлите ее. Можно также приложить к этой стороне угла лист бумаги, который доходил бы до дуги транспортира. Пересекаемое число покажет вам величину угла в градусах.

    • В приведенном выше примере величина угла составляет 70 градусов. При этом мы пользуемся меньшей шкалой, так как определили ранее, что имеем дело с острым углом, то есть его величина не превышает 90 градусов. Для тупых углов следует использовать более крупную шкалу со значениями больше 90 градусов.
    • На первых порах можно путаться со шкалой. Большинство транспортиров имеют две шкалы, одну на внутренней и вторую на внешней стороне округлой части. Это сделано для того, чтобы было удобно измерять углы как левой, так и правой ориентации.

Метод 2 из 2:

Построение угла с помощью транспортира

  1. 1

    Проведите прямую линию. Это будет опорная линия, которая послужит одной из двух сторон будущего угла. С ее помощью вы определите направление, в котором следует провести вторую сторону угла. Как правило, первую прямую линию удобно провести горизонтально.

    • При этом можно воспользоваться прямым краем транспортира.
    • Длина линии не важна.
  2. 2

    Расположите центр транспортира на одном из концов проведенной линии. Это будет вершина будущего угла. Отметьте на бумаге точку вершины.
    X
    Источник информации

    Не обязательно располагать вершину на краю линии. Вершина угла может размещаться в любой точке на линии, просто удобнее использовать крайнюю точку.

  3. 3

    Отыщите на соответствующей шкале транспортира необходимый вам угол. Приложите к прямой линии основание транспортира и отметьте на бумаге соответствующее число градусов. Если необходимо построить острый угол (менее 90 градусов), используйте шкалу с меньшими значениями. Для тупого угла воспользуйтесь шкалой с большими величинами.

    • Помните о том, что основание транспортира — это его прямая часть. Совместите его центр с вершиной будущего угла и отметьте на бумаге необходимую величину угла.
    • На приведенном выше видео величина угла составляет 36 градусов.
  4. 4

    Проведите вторую сторону угла. С помощью линейки, прямого края транспортира или другого инструмента проведите вторую сторону угла — соедините вершину со сделанной ранее меткой. В результате у вас получится заданный угол. С помощью транспортира можно измерить угол и убедиться, что все правильно.

  • карандаш или ручка
  • бумага
  • транспортир
  • линейка (необязательно)

Символ диаметра

Символы со сходным начертанием: Ø · ø ·

Символ диаметра «⌀» (может не отображаться в некоторых браузерах) схож начертанием со строчной перечёркнутой буквой «o». В Юникоде он находится под десятичным номером 8960 или шестнадцатеричным номером 2300 (может быть введён в HTML-код как или ). Этот символ не присутствует в стандартных раскладках, поэтому для его ввода при компьютерном наборе необходимо использовать вспомогательные средства — например, приложение «Таблица символов» в Windows, программу «Таблица символов» (ранее gucharmap) в GNOME, команду «Вставка» → «Символ…» в программах Microsoft Office и т. д. Специализированные программы могут предоставлять пользователю свои способы ввода этого символа: к примеру, в САПР AutoCAD для ввода символа диаметра используется сочетание символов (буква  — латинская) или в текстовой строке.

Во многих случаях символ диаметра может не отображаться, так как он редко включается в шрифты — например, он присутствует в Arial Unicode MS (поставляется с Microsoft Office, при установке именуется «Универсальный шрифт»), DejaVu (свободный), Code2000 (условно-бесплатный) и некоторых других.

Сопряжённые диаметры эллипса


Пара сопряжённых диаметров эллипса. Если в точках касания диаметра с эллипсом провести прямую, параллельную сопряжённому диаметру, то прямая будет касательной к эллипсу и четыре таких касательных ко всем четырём концам пары сопряжённых диаметров эллипса образуют описанный около эллипса параллелограмм

Диаметром эллипса называют произвольную хорду, проходящую через его центр. Сопряжёнными диаметрами эллипса называют пару его диаметров, обладающих следующим свойством: середины хорд, параллельных первому диаметру, лежат на втором диаметре. В этом случае и середины хорд, параллельных второму диаметру, лежат на первом диаметре.

На рисунке представлена пара сопряженных диаметров (красный и синий). Если в точках пересечения диаметра с эллипсом провести прямую, параллельную сопряжённому диаметру, то прямая будет касательной к эллипсу, и четыре таких касательных ко всем четырём концам пары сопряжённых диаметров эллипса образуют описанный около эллипса параллелограмм (зеленые линии на рисунке).

  • Расстояния r1{\displaystyle r_{1}} и r2{\displaystyle r_{2}} от каждого из фокусов до данной точки на эллипсе называются фокальными радиусами в этой точке.
  • Радиус эллипса в данной точке (расстояние от его центра до данной точки) вычисляется по формуле r=abb2cos2⁡φ+a2sin2⁡φ=b1−e2cos2⁡φ{\displaystyle r={\frac {ab}{\sqrt {b^{2}\cos ^{2}\varphi +a^{2}\sin ^{2}\varphi }}}={\frac {b}{\sqrt {1-e^{2}\cos ^{2}\varphi }}}}, где φ{\displaystyle \varphi } — угол между радиус-вектором данной точки и осью абсцисс.

Сопряжённые диаметры гиперболы

Диаметры гиперболы

  • Диаметром гиперболы, как и всякого конического сечения, является прямая, проходящая через середины параллельных хорд. Каждому направлению параллельных хорд соответствует свой сопряжённый диаметр. Все диаметры гиперболы проходят через её центр. Диаметр, соответствующий хордам, параллельным мнимой оси, есть действительная ось; диаметр соответствующий хордам, параллельным действительной оси, есть мнимая ось.
  • Угловой коэффициент k{\displaystyle k} параллельных хорд и угловой коэффициент k1{\displaystyle k_{1}} соответствующего диаметра связан соотношением
k⋅k1=ε2−1=b2a2{\displaystyle k\cdot k_{1}=\varepsilon ^{2}-1={\frac {b^{2}}{a^{2}}}}

Для произвольного угла φ показаны диаметры и сопряженные им диаметры для окружностей и равнобочных гипербол.
  • Если диаметр гипербол a делит пополам хорды, параллельные диаметру b, то диаметр b делит пополам хорды, параллельные диаметру a. Такие диаметры называются взаимно сопряжёнными.
  • Главными диаметрами гипербол называются взаимно сопряжённые и взаимно перпендикулярные диаметры. У гиперболы есть только одна пара главных диаметров — действительная и мнимая оси.
  • В случае гипербол с асимптотами, образующими прямой угол, её сопряженные гиперболы получатся при её зеркальном отражении относительно одной из асимптот. При таком зеркальном отражении её диаметр перейдет в сопряженный диаметр, который будет просто диаметром сопряженной гиперболы (см. рис.). Также. как наблюдается перпендикулярность сопряженных диаметров на окружности (на рис. слева), аналогичная ортогональность наблюдается для сопряженных диаметров гиперболы со взаимно перпендикулярными асимптотами (на рис. справа).

Об этой статье

Соавтор(ы):

Генеральный подрядчик

Соавтор(ы): . Марк Спелман — генеральный подрядчик из Техаса. Профессионально занимается строительством с 1987 года. Количество просмотров этой статьи: 59 159.

Категории: Потолок, стены и пол

English:Use the 3 4 5 Rule to Build Square Corners

Español:diseñar esquinas usando la proporción 3 4 5 del teorema de Pitágoras

Italiano:Creare Angoli Retti Usando la Proporzione 3 4 5 del Teorema di Pitagora

Français:utiliser la méthode 3 4 5 pour construire des angles droits

Bahasa Indonesia:Menggunakan Kaidah 3 4 5 untuk Membuat Sudut Siku Siku

Nederlands:De 3 4 5 regel gebruiken om haakse hoeken te bepalen

العربية:استخدام قانون 3 4 5 لصنع زوايا مربعة

Deutsch:Die 3 4 5 Regel nutzen um rechtwinklige Ecken zu konstruieren

中文:用3‐4‐5方法构建直角

ไทย:ใช้กฎ 3 4 5 ในการสร้างมุมของสี่เหลี่ยม

Türkçe:Kare Köşeler Oluşturmak İçin 3 4 5 Kuralı Nasıl Kullanılır

Печать

Об этой статье

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 22 человек(а). Количество просмотров этой статьи: 25 682.

Категории: Геометрия

English:Find the Angle Between Two Vectors

Español:encontrar el ángulo entre dos vectores

Português:Achar o Ângulo Entre Dois Vértices

Italiano:Calcolare l’Angolo tra Due Vettori

Français:calculer l’angle entre deux vecteurs

Nederlands:De hoek tussen twee vectoren vinden

Bahasa Indonesia:Mencari Sudut antara Dua Vektor

中文:找到两个向量的夹角

ไทย:หามุมระหว่างสองเวกเตอร์

日本語:2つのベクトルの角度を求める

Tiếng Việt:Tìm góc giữa hai véc tơ

العربية:إيجاد الزاوية بين متجهين

हिन्दी:दो वेक्टर्स के बीच का कोण ज्ञात करें

한국어:두 벡터 사이 각도 구하기

Türkçe:İki Vektör Arasındaki Açı Nasıl Bulunur

Печать

Обозначение углов на чертеже.

На чертежах для удобства и наглядности углы можно отмечать дугами, которые принято проводить во внутренней области угла от одной стороны угла до другой. Равные углы отмечают одинаковым количеством дуг, неравные углы – различным количеством дуг. Прямые углы на чертеже обозначают символом вида «», который изображают во внутренней области прямого угла от одной стороны угла до другой.

Если на чертеже приходится отмечать много различных углов (обычно больше трех), то при обозначении углов кроме обычных дуг допустимо использование дуг какого-либо специального вида. К примеру, можно изобразить зубчатые дуги, или нечто подобное.

Следует отметить, что не стоит увлекаться с обозначением углов на чертежах и не загромождать рисунки. Рекомендуем обозначать только те углы, которые необходимы в процессе решения или доказательства.

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.

Некогда разбираться?

Что такое уклон? Как определить уклон? Как построить уклон? Обозначение уклона на чертежах по ГОСТ.

Уклон. Уклон это отклонение прямой линии от вертикального или горизонтального положения.
Определение уклона. Уклон определяется как отношение противолежащего катета угла прямоугольного треугольника к прилежащему катету, то есть он выражается тангенсом угла а. Уклон можно посчитать по формуле i=AC/AB=tga.

Построение уклона. На примере (рисунок ) наглядно продемонстрировано построение уклона. Для построения уклона 1:1, например, нужно на сторонах прямого угла отложить произвольные, но равные отрезки. Такой уклон, будет соответствовать углу в 45 градусов. Для того чтобы построить уклон 1:2, нужно по горизонтали отложить отрезок равный по значению двум отрезкам отложенным по вертикали. Как видно из чертежа, уклон есть отношение катета противолежащего к катету прилежащему, т. е. он выражается тангенсом угла а.

Обозначение уклона на чертежах. Обозначение уклонов на чертеже выполняется в соответствии с ГОСТ 2.307—68. На чертеже указывают величину уклона с помощью линии-выноски. На полке линии-выноски наносят знак и величину уклона. Знак уклона должен соответствовать уклону определяемой линии, то есть одна из прямых знака уклона должна быть горизонтальна, а другая должна быть наклонена в ту же сторону, что и определяемая линия уклона. Угол уклона линии знака примерно 30°.

Угол и скалярное произведение

Понятие угла можно определить для линейных пространств произвольной природы (и произвольной, в том числе бесконечной размерности), на которых аксиоматически введено положительно определённое скалярное произведение (x,y){\displaystyle (x,y)} между двумя элементами пространства x{\displaystyle x} и y.{\displaystyle y.} Скалярное произведение позволяет определить также и так называемую норму (длину) элемента как квадратный корень произведения элемента на себя ||x||=(x,x).{\displaystyle ||x||={\sqrt {(x,x)}}.} Из аксиом скалярного произведения следует неравенство Коши — Буняковского (Коши — Шварца) для скалярного произведения: |(x,y)|⩽||x||⋅||y||,{\displaystyle |(x,y)|\leqslant ||x||\cdot ||y||,} откуда следует, что величина (x,y)||x||⋅||y||{\displaystyle {\frac {(x,y)}{||x||\cdot ||y||}}} принимает значения от −1 до 1, причём крайние значения достигаются тогда и только тогда, когда элементы пропорциональны (коллинеарны) друг другу (говоря геометрически — их направления совпадают или противоположны). Это позволяет интерпретировать отношение (x,y)||x||⋅||y||{\displaystyle {\frac {(x,y)}{||x||\cdot ||y||}}} как косинус угла между элементами x{\displaystyle x} и y.{\displaystyle y.} В частности, элементы называют ортогональными, если скалярное произведение (или косинус угла) равно нулю.

В частности, можно ввести понятие угла между непрерывными на некотором интервале a,b{\displaystyle } функциями, если ввести стандартное скалярное произведение (f,g)=∫abf(x)g(x)dx,{\displaystyle (f,g)=\int _{a}^{b}f(x)g(x)dx,} тогда нормы функций определяются как ||f||2=∫abf2(x)dx.{\displaystyle ||f||^{2}=\int _{a}^{b}f^{2}(x)dx.} Тогда косинус угла определяется стандартным образом как отношение скалярного произведения функций к их нормам. Функции также можно назвать ортогональными, если их скалярное произведение (интеграл их произведения) равно нулю.

В римановой геометрии можно аналогично определить угол между касательными векторами с помощью метрического тензора gij.{\displaystyle g_{ij}.} Скалярное произведение касательных векторов u{\displaystyle u} и v{\displaystyle v} в тензорной записи будет иметь вид: (u,v)=gijuivj,{\displaystyle (u,v)=g_{ij}u^{i}v^{j},} соответственно нормы векторов — ||u||=|gijuiuj|{\displaystyle ||u||={\sqrt {|g_{ij}u^{i}u^{j}|}}} и ||v||=|gijvivj|.{\displaystyle ||v||={\sqrt {|g_{ij}v^{i}v^{j}|}}.} Поэтому косинус угла будет определяться по стандартной формуле отношения указанного скалярного произведения к нормам векторов: cos⁡θ=(u,v)||u||⋅||v||=gijuivj|gijuiuj|⋅|gijvivj|.{\displaystyle \cos \theta ={\frac {(u,v)}{||u||\cdot ||v||}}={\frac {g_{ij}u^{i}v^{j}}{\sqrt {|g_{ij}u^{i}u^{j}|\cdot |g_{ij}v^{i}v^{j}|}}}.}

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации