Андрей Смирнов
Время чтения: ~4 мин.
Просмотров: 0

Как нарисовать шестиугольник с помощью линейки

Пространственный десятиугольник

Правильные пространственные десятиугольники
{5}#{ } {5/2}#{ } {5/3}#{ }

Пентаграммная антипризма

Пентаграммная антипризма с перекрёстом

Пространственный десятиугольник — это пространственный многоугольник с десятью рёбрами и вершинами, но не лежащими в одной плоскости. У пространственного зиг-заг десятиугольника вершины чередуются между двумя параллельными плоскостями.

У правильного пространственного десятиугольника все рёбра равны. В трёхмерном пространстве это зиг-заг пространственный декагон, он может быть обнаружен среди рёбер и вершин пентагональной антипризмы, пентаграммной антипризмы, пентаграммной перекрещивающейся антипризмы с той же D5d симметрией порядка 20.

Его также можно найти в некоторых выпуклых многогранниках с икосаэдрической симметрией. Многоугольники по периметру этих проекций (см. ниже) это пространственные десятиугольники.

Ортогональные проекции многогранников
Додекаэдр Икосаэдр Икосододекаэдр Ромботриаконтаэдр

Многоугольники Петри

Правильный пространственный десятиугольник — это многоугольник Петри для многих многогранников высших размерностей, как показано на этих ортогональных проекциях на различных плоскостях Коксетера.

A9 D6 B5
9-симплекс 411 131 5-ортоплекс 5-куб

Применение восьмиугольников

Дорожный знак «Движение без остановки запрещено»

Восьмиугольный план Купола Скалы

В странах, принявших Венскую конвенцию о дорожных знаках и сигналах (в том числе в России), а также во многих других странах, знак «Движение без остановки запрещено» имеет вид красного восьмиугольника.

Восьмиугольные формы часто используются в архитектуре. Купол Скалы имеет восьмиугольный план. Башня Ветров в Афинах — ещё один пример восьмиугольной структуры. Восьмиугольный план встречается также в архитектуре церквей, таких как Собор Святого Георгия (Аддис-Абеба), Сан-Витале (в городе Равенна, Италия), Замок Кастель-дель-Монте (Апулия, Италия), Флорентийский баптистерий и . Центральное пространство в Ахенский собор, Капелла Карла Великого имеют планы в виде правильного восьмиугольника.

Построение

Приближённое построение правильного семиугольника

Точное

Согласно теореме Гаусса — Ванцеля, правильный семиугольник невозможно построить с помощью циркуля и линейки, но можно построить с помощью циркуля и невсиса, то есть размеченной линейки, на которой можно делать отметки и с помощью которой можно проводить прямые, проходящие через какую-нибудь точку, причём отмеченные на линейке точки будут принадлежать данным линиям (прямым или окружностям).

Построим квадрат PQRO со стороной a (см. рис.). Проведём дугу окружности с центром O и радиусом OQ. Возьмём линейку невсиса с диастемой (длиной) a и используя вертикальную ось симметрии квадрата в качестве направляющей, точку P в качестве полюса и дугу окружности в качестве целевой линии, получим отрезок AB, который будет стороной правильного семиугольника, с вертикальной осью симметрии, совпадающей с осью симметрии квадрата.

Приближённое

Приближённое (но с достаточной для практики точностью ≈0,2 %) построение семиугольника показано на рисунке. Из точки A{\displaystyle A} на окружности радиусом, равным радиусу окружности, проводим дугу BOC{\displaystyle BOC}. Отрезок BD=12BC{\displaystyle BD={1 \over 2}BC} и даст искомое приближение.


Анимация приближённого построения правильного семиугольника с помощью циркуля и линейки.

Построение

Точное построение

Проводим большую окружность k₁ (будущую описанную окружность семнадцатиугольника) с центром O.
Проводим её диаметр AB.
Строим к нему перпендикуляр m, пересекающий k₁ в точках C и D.
Отмечаем точку E — середину DO.
Посередине EO отмечаем точку F и проводим отрезок FA.
Строим биссектрису w₁ угла ∠OFA.
Строим w₂ — биссектрису угла между m и w₁, которая пересекает AB в точке G.
Проводим s — перпендикуляр к w₂ из точки F.
Строим w₃ — биссектрису угла между s и w₂. Она пересекает AB в точке H.
Строим окружность Фалеса (k₂) на диаметре HA. Она пересекается с CD в точках J и K.
Проводим окружность k₃ с центром G через точки J и K. Она пересекается с AB в точках L и N

Здесь важно не перепутать N с M, они расположены очень близко.
Строим касательную к k₃ через N.

Точки пересечения этой касательной с исходной окружностью k₁ — это точки P₃ и P₁₄ искомого семнадцатиугольника. Если принять середину получившейся дуги за P₀ и отложить дугу P₀P₁₄ по окружности три раза, все вершины семнадцатиугольника будут построены.

Примерное построение

Следующее построение хоть и приблизительно, но гораздо более удобно.

  1. Ставим на плоскости точку M, строим вокруг неё окружность k и проводим её диаметр AB;
  2. Делим пополам радиус AM три раза по очереди по направлению к центру (точки C, D и E).
  3. Делим пополам отрезок EB (точка F).
  4. строим перпендикуляр к AB в точке F.

Вкратце: строим перпендикуляр к диаметру на расстоянии 9/16 диаметра от B.

Точки пересечения последнего перпендикуляра с окружностью являются хорошим приближением для точек P₃ и P₁₄.

При этом построении получается относительная ошибка в 0,83%. Углы и стороны получаются таким образом немного больше, чем нужно. При радиусе 332,4 мм сторона получается длиннее на 1 мм.

Применение

Семиугольная монета в 50 пенсов (150 лет Публичной библиотеке)

В Великобритании используются две монеты в форме семиугольника: 50 пенсов и 20 пенсов. Строго говоря, форма монет — криволинейный семиугольник, образующий кривую постоянной ширины, чтобы монеты плавно проходили в автоматы. Семиугольный кант аналогичной криволинейной формы имеет круглая монета номиналом в 10 киргизских сом.

Семиугольная звезда 7/2 являлась национальным символом Грузии и применялась, как элемент герба Грузии, в том числе и в советское время. В настоящее время не применяется.

Семиугольная звезда 7/3 является эмблемой компании A.P. Moller-Maersk Group.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации