Андрей Смирнов
Время чтения: ~12 мин.
Просмотров: 0

Инверторные стабилизаторы напряжения

Принцип работы

Инверторные стабилизаторы коренным образом отличаются от всех ранее рассмотренных устройств. Центральное значение в принципе работы данных приборов имеет технология инвертирования. Процесс функционирования стабилизатора выглядит следующим образом. Сетевое питающее напряжение, поступая на вход прибора и проходя через высокочастотный фильтр, отсекающий импульсные помехи, гармоники высшего порядка, подаётся на выпрямитель. Затем переменный ток, через выпрямитель, попадает в корректор КМ (коэффициента мощности). В его задачу входит поддержание одинакового уровня мощности, который не будет зависеть от любых изменений входного напряжения. Переменный ток на этом этапе преобразуется в постоянный.

Напряжение постоянного тока накапливается в конденсаторной батарее, которая специально предназначена для накопления электроэнергии при её избытках. А когда электроэнергии не хватает, тогда конденсаторная установка наоборот — отдаёт её, компенсируя появившийся недостаток.

Далее постоянное напряжение поступает в преобразователь напряжения (инвертор), который преобразует его обратно в переменное, соответствующее необходимым нормам и характеристикам, т.е. формирует из него переменное синусоидальное напряжение требуемой частоты и амплитуды. Инвертор работает на мощных транзисторах, которые установлены на радиаторах. Такая схема преобразования способствует минимальным потерям энергии.

За работу транзисторов отвечает микроконтроллер, а входящий в его состав кварцевый генератор формирует и поддерживает стабильную частоту переменного тока.
В стабилизаторах инверторного типа происходит двойное преобразование напряжения, что позволяет получать на выходе ток с практически идеальными характеристиками.

Смысл описанных преобразований заключается в следующем. Работой инвертора управляет микропроцессорный контроллер, благодаря которому напряжение приобретает строго синусоидальную форму, номинальную частоту и амплитуду. Таким образом, стабилизаторы инверторного типа обеспечивают нагрузку напряжением более высокого качества, чем стабилизаторы любого другого типа.

Если говорить о синусоидальности переменного напряжения, являющейся одной из важнейших показателей качества электроэнергии, то традиционные стабилизаторы в лучшем случае не ухудшают этот показатель сетевого напряжения, либо вносят некоторые помехи. Инверторные устройства формируют синусоиду самостоятельно, в соответствии с программой, прошитой в контроллере, поэтому на практике всегда происходит повышение качества электроэнергии. Другие технологии синусоиду исправить не могут, максимум не ухудшить.

Основные элементы прибора:

  • сетевой фильтр;
  • выпрямитель;
  • корректор КМ;
  • конденсаторная батарея;
  • преобразователь напряжения;
  • микроконтроллер;
  • кварцевый генератор;
  • блок индикации и управления;
  • системы защиты.

Принцип, лежащий в основе инверторных стабилизаторов, не содержит каких либо новых научных открытий последних лет и известен достаточно давно. Сравнительно недавний прорыв в этой области обусловлен началом массового выпуска мощных транзисторов, созданных по технологии IGBT и MOSFET. Именно транзисторы такого типа служат основными ключевыми элементами инверторных преобразователей.

На данный момент, схема реализована двумя производителями — это линейка Штиль ИнСтаб и отдельный стабилизатор Ресанта ACH-6000/1-И, сравним их параметры в таблице.

Нормы качества сетевого напряжения


Выпускаемое сегодня промышленное и бытовое электрическое оборудование проектируется производителями с характеристиками,
соответствующими международным и государственным стандартам электропитания.
Российский стандарт (ГОСТ 13109-97) регламентирует бытовое электропитание по напряжению (220 В ± 5% с предельным отклонением ± 10%),
частоте (частота 50 ± 0,2 Гц с предельным отклонением ± 0,4 Гц) и коэффициенту несинусоидальности (до 8 % с предельным отклонением до 12%).

Практически все производимое в мире оборудование и электроприборы бытового назначения согласуется с этими параметрами.
Но по вполне объективным причинам (техническое несовершенство отечественных электросетей, устарелость большинства используемых в них приборов и
оборудования) соблюдение ГОСТа часто проблематично, что приводит к сетевым искажениям, крайне губительно влияющим на работу электроприборов
(стиральные машины, компьютеры, холодильники, микроволновые печи, насосы, электрокотлы, системы охраны и т.п.).
Избавиться от возможных финансовых потерь, обусловленных поломкой электрооборудования, можно с помощью включения стабилизаторов, последовательно между токоприемником,
бытовым прибором и питающей электрической сетью.
Требования к регулируемым стабилизаторам определяются тем же ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения».

Технические характеристики стабилизаторов

При выборе стабилизатора переменного напряжения домашней сети большое внимание следует обратить на его основные технические характеристики, к которым относятся следующие:

  • максимально допустимая мощность нагрузки, которую может обеспечить стабилизатор при сохранении параметров качества сетевого напряжения;
  • допустимые колебания сетевого напряжения, при которых напряжение на выходе стабилизатора сохраняет свое значение с учетом требований стандартов качества;
  • скорость выравнивания, определяющая время отклика стабилизатора на кратковременные быстропеременные изменения сетевого напряжения для сохранения выходного напряжения неизменным;
  • форма выходного сигнала, приближающаяся в идеале к синусоиде;
  • точность параметров стабилизированного напряжения;
  • степень защиты, определяющая возможность эксплуатации стабилизатора в условиях экстремальных температур и повышенных значений относительного уровня влажности;
  • форм-фактор, определяющий габариты стабилизатора;
  • уровень помех, создаваемый устройством, для работы окружающего оборудования.

Дополнительным фактором, влияющим на выбор стабилизатора, может служить наличие элементов визуальной индикации и сигнализации.

Она должна информировать пользователя в полной мере о значениях входных и стабилизированных параметров и предупреждать о возникновении критических ситуаций.

Конструкция и Элементная база

АвтотрансформаторЭто вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую. За счёт чего у них не только магнитная связь, но и электрическая. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные электрические напряжения.

Микропроцессорное управление Посредством команд микропроцессора осуществляется управление работой электронных ключей автотрансформатора.

Симисторные ключи (тиристорные ключи)Силовые электронные элементы, позволяющие осуществлять переключение между обмотками автотрансформатора с большой силой тока.

СервоприводУправляющий механизм, обеспечивающий совершение определенных механических действий посредством работы электропривода.

Сальниковые вводы (гермовводы)Отверстия с резиновыми уплотнениями, зажимаемыми накидной гайкой, обеспечивающие герметичный ввод проводов в корпус прибора.

Гальваническая развязкаПередача энергии или информационного сигнала между электрическими цепями, не имеющими непосредственного электрического контакта между ними за счет электромагнитной индукции.

Устройство сопряженияУстройство, устраняющее проблемы с некачественным (или отсутствующим) заземлением, которые порождают  паразитные токи, наводки. Позволяет адаптировать автоматику газового котла для работы с автономными генераторами и со старыми сетями без заземления.

Советы по выбору стабилизатора

Многообразие видов стабилизаторов, представленных на рынке сбыта, не то, что упрощает процесс выбора, даже его усложняет. Бытовые приборы не придирчивы к небольшим скачкам напряжения в сети. Но газовый котёл, отапливающий жильё, без этого устройства обойтись не может. И электронная начинка, и электромеханические компоненты котла могут надёжно работать только при устойчивых характеристиках питающего напряжения. Если позволяют средства, то электромеханический тип устройства – наиболее подходящий выбор для сложного оборудования.

Несмотря на разнообразие типов стабилизаторов напряжения есть несколько нюансов, на которые следует обратить внимание. При выборе стабилизатора необходимо уточнить страну производителя и внимательно изучить характеристики

У дешёвых приборов китайского производства они могут быть занижены. Поэтому при покупке нужно останавливать выбор на моделях, имеющих запас 20-35% по мощности

При выборе стабилизатора необходимо уточнить страну производителя и внимательно изучить характеристики. У дешёвых приборов китайского производства они могут быть занижены. Поэтому при покупке нужно останавливать выбор на моделях, имеющих запас 20-35% по мощности.

Дальше, при выборе, надо ориентироваться на следующие критерии:

  • минимальная мощность устройства (зависит от максимального количества одновременно работающих бытовых приборов): для средней квартиры – 7,5 КВА, для частного дома – не менее 22 КВА;
  • минимальное входное напряжение (если оно постоянно занижено, то нижний предел регулирования должен начинаться от 140 В);
  • КПД прибора – от 90%;
  • точность стабилизации – нужно выбирать ближе к 5% (максимум 8%);
  • вид установки при монтаже (зависит от конструкции и места);
  • класс электробезопасности (степень защиты) – не ниже IP24.

Правильно подобранный и установленный стабилизатор напряжения повысит надёжность работы бытовой техники и электроприборов, избавит от плохого качества освещения и защитит от перегрузки комнатной проводки. Выбрать по принципу «доступное качество по доступной цене» легко, понимая, как работают различные системы стабилизации напряжения в сети.

Для дома

Нужно понимать, что для дома даже погрешность релейных моделей в 8-10% является приемлемой и большинство приборов «переваривают» такие отклонения спокойно

У тиристорных точность работы выше, она обычно 3-5%, казалось бы, зачем это в быту? Но наряду с этим они реагирует быстрее, как писали ранее и перегрузки, в моменте, терпят гораздо бОльшие, а это важно при пусковых токах насосов, станков и пр. Ну и дорогая аудио- и видео-техника тяготеет к хорошему питанию

Пример

В качестве примера, рассмотрим стабилизаторы от одного производителя: тиристорные Энергия Classic и Энергия Ultra имеют точность работы 5 и 3% соответственно, а перегрузку терпят в 180%. Представители релейного сегмента Энергия Voltron работают с точностью 5% и способны вытерпеть кратковременную перегрузку в 110%.

Тиристорные трехфазные стабилизаторы

Тиристорные стабилизаторы, на данный момент, выпускают только однофазные, но для сети 380 В приобретается модульный комплект из 3-х однофазных приборов, а если появляется прибор требующий ровно 380 В, то докупается блок контроля сети.

Популярные модели тиристорных стабилизаторов напряжения

Стабилизатор напряжения Энергия Classic 5000

Подробнее

Цена: 23 100 руб.

  • — Мощность 5 кВ·А
  • — Электронный
  • — Настенное крепление
  • Габариты: 320х420х180 мм
  • Масса: 16 кг.

Стабилизатор напряжения Энергия Ultra 35000

Подробнее

Цена: 160 000 руб.

  • — Мощность 35 кВ·А
  • — Электронный
  • — Настенное крепление
  • Габариты: 735х615х545 мм
  • Масса: 100 кг.

Стабилизатор напряжения Энергия Classic 9000

Подробнее

Цена: 32 000 руб.

  • — Мощность 9 кВ·А
  • — Электронный
  • — Настенное крепление
  • Габариты: 320х420х180 мм
  • Масса: 20 кг.

Стабилизатор напряжения Энергия Classic 12000

Подробнее

Цена: 37 400 руб.

  • — Мощность 12 кВ·А
  • — Электронный
  • — Настенное крепление
  • Габариты: 360х500х200 мм
  • Масса: 32 кг.

Стабилизатор напряжения Энергия Classic 7500

Подробнее

Цена: 27 100 руб.

  • — Мощность 7.50 кВ·А
  • — Электронный
  • — Настенное крепление
  • Габариты: 320х420х180 мм
  • Масса: 20 кг.

Смотреть другие тиристорные модели

Принцип работы инверторного стабилизатора

В основу работы инверторного стабилизатора напряжения положен принцип двойного преобразования. Сначала входное переменное напряжение преобразуется в постоянный ток, а затем производится обратное преобразование. Обеспечение на выходе устройства стабильного переменного напряжения 220 В осуществляется электроникой инверторных стабилизаторов напряжения.

Она не имеет громоздких силовых трансформаторов. Состав стабилизаторов включает следующие электронные блоки:

  • входной сетевой LC фильтр;
  • полупроводниковый диодный двухполупериодный выпрямитель;
  • устройство коррекции коэффициента мощности;
  • блок накопительных конденсаторов;
  • инвертор-преобразователь;
  • кварцевый тактовый генератор стабильной частоты;
  • высокочастотный выходной фильтр;
  • микропроцессорный контроллер.

Пассивный входной сетевой фильтр используется для устранения высокочастотных помех и сглаживания коротких выбросов напряжения питающей сети. Выпрямитель преобразует переменное напряжение в постоянное, часть электрической энергии которого накапливается в блоке электролитических конденсаторов большой емкости. Они являются резервным источником, вступающим в работу при появлении провалов сетевого напряжения или его кратковременном отключении.

Задача корректора состоит в нормализации мощности, отбираемой от сети, не допуская перегрузки стабилизатора при его работе. Инвертор-преобразователь восстанавливает переменное напряжение из постоянного. За счет участия в его работе кварцевого генератора выходное напряжение имеет форму чистой синусоиды частотой 50 Гц с погрешностью, не превышающей 0,5%.

Контроллер управляет работой цепей стабилизации выходного напряжения и производит оценку состояния отдельных блоков устройства с выдачей результатов на элементы индикации. Он выдает команды на автоматическое отключение работы стабилизатора в случае выхода значения входного напряжения за диапазон регулирования, определяемый техническими характеристиками.

Нагрузка и мощность

Нагрузка (полезная нагрузка)Приборы и оборудование, подключаемые к стабилизатору.

Номинальная нагрузка (выходная мощность)Разрешенная производителем мощность подключаемой нагрузки, при которой стабилизатор работает без перегрузки.

Активная нагрузка  (активная мощность)Приборы, не имеющие в своем составе катушек индуктивности и емкостей (лампы накаливания, электроплиты, утюги, обогреватели и т.п.). Для таких приборов активная и полная мощности совпадают.

Реактивная нагрузка (реактивная мощность)Это часть энергии, которая в процессе работы электроприбора накапливается в катушках индуктивности и емкостях и не совершает полезной работы, но которая учитывается в полной мощности прибора в виде реактивной составляющей (в дополнение к активной составляющей).

Полная мощность Сумма активной и реактивной мощности.

Перегрузочная мощность (максимальная мощность, запас мощности, перегрузочная способность, перегрузка)Перегрузочная мощность это выходная мощность прибора, превышающая номинальную мощность и которую он может кратковременно развивать  без ущерба для своей работоспособности в период действия перегрузки. Обычно такая работа связана с появлением высоких пусковых токов подключенного оборудования в первоначальный момент накопления энергии в катушках индуктивности или емкостях. Затраченная на это мощность называется реактивной. О параметрах перегрузочной мощности (её значении и времени действия) производитель обычно информирует отдельно.

Пусковые токи оборудования (Перегрузка)Кратковременное увеличение потребляемой мощности оборудования. Появление пусковых токов объясняется накоплением дополнительной энергии в  катушках индуктивности или емкостях в виде реактивной составляющей мощности.

Коэффициент мощности (сos(φ))     Безразмерная физическая величина, характеризующая потребителя переменного электрического тока;с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе; переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения. Численно коэффициент мощности равен косинусу этого фазового сдвига.

φ =90⁰, сos(φ)=0 — нагрузка полностью реактивная.

φ =45⁰, сos(φ)=0.71 — нагрузка имеет реактивную и активную составляющую. 

φ =0⁰, сos(φ)=1 — нагрузка полностью активная. 

Значение коэффициента мощности Высокое Хорошее Удовлетворительное Низкое Неудовлетворительное
сos(φ) 0,95…1 0,8…0,95 0,65…0,8 0,5…0,65 0…0,5

Корректор мощности на входеКоррекция реактивной составляющей полной мощности потребления устройства выполняется путём включения в цепь реактивного элемента, производящего обратное действие. Например, для компенсации действия электродвигателя переменного тока, обладающего высокой индуктивной реактивной составляющей полной мощности, параллельно цепи питания включается конденсатор.

Коэффициент полезного действия (КПД)В замкнутой электроцепи, при протекании зарядов по проводникам, осуществляется сопротивление полной и полезной нагрузки работы электричества. Их соотношение определяет коэффициент полезного действия (другими словами это отношение полезного тепла к полному). Как правило, КПД это безразмерный коэффициент от 0 до 1, чем он выше, тем эффективнее будет работать устройство и меньше будут потери электричества.

Собственная потребляемая мощность, холостой ходКаждый стабилизатор тратит энергию на работу собственной электроники и нагрев силовых элементов даже при отсутствии полезной нагрузки (на холостом ходу). Самый простой способ оценить собственную потребляемую мощность это произвести расчёт по коэффициенту полезного действия (КПД), который обычно указан в техпаспорте. Достаточно мощность устройства умножить на процент потерь (от 100% нужно отнять значение КПД).  Так, прибору мощностью 1000Вт с КПД 97% для работы без нагрузки понадобится 30 Вт в час (100%-97%=3% и  1000Вт*3%=30Вт).

Асинхронный двигательНаиболее распространённый в бытовой технике двигатель переменного тока, обладающий высокими пусковыми токами. Долговечность его работы в основном зависит от качества питающего напряжения.

Защита

Короткое замыкание (КЗ)Это любое незапланированное, нештатное соединение электрических проводников с разным потенциалом, например, фазы и ноля, при котором образуются разрушительные токи, несущие угрозу работоспособности оборудования и жизни человека.

Тройная защита от перегрузкиЗащита по току, защита по напряжению и защита по температуре, примененная в стабилизаторах производства компании БАСТИОН.

Автоматический выключатель (автомат)Защитный автомат произведет автоматическое отключение, если фазный провод попадает на защитный (заземляющий) проводник,  что равносильно короткому замыканию (то есть максимально возможному току в схеме), что приведет к срабатыванию  электромагнитной защиты.

Класс защиты (IP — Ingress Protection)Международный электротехнический стандарт степени защищенности приборов от проникновения  в них частей тела, пыли, предметов, случайного контакта (первая цифра от 0 до 6) и влаги, воды, капель, струй и т.п. (вторая цифра от 0 до 8)

Плюсы и минусы

Тиристорные стабилизаторы напряжения обладают рядом преимуществ по сравнению с устройствами релейного типа, основными из которых являются:

  • более высокая скорость переключения ступеней, т.е. тиристоров по сравнению с электромеханическими реле. Благодаря этому качеству тиристорные приборы быстрее реагируют на изменение напряжения;
  • стабилизаторы с электронными ключами не имеют механических контактов и движущихся частей, что обеспечивает их бОльшую искробезопасность (не абсолютную!) и более длительный эксплуатационный ресурс.

Общим недостатком всех регуляторов ступенчатого типа, переключающих отводы вторичной обмотки автотрансформатора (и релейных в том числе), является неизбежность наличия определённой погрешности регулирования. Проблема заключается в следующем. СтабЭксперт.ру напоминает, что проектировщики при создании оборудования этого типа всегда ищут компромисс между пределами регулирования напряжения и погрешностью этого самого регулирования.

Предел регулирования зависит от количества витков между крайними выводами обмотки, подключаемыми к нагрузке контактами реле или электронными ключами. Точность же стабилизации определяется числом витков одной секции, составляющей ступень регулирования. Таким образом, при большом диапазоне регулирования получить низкую погрешность можно, если разделить этот диапазон на большое количество ступеней с малым числом витков. Однако стабилизатор с большим числом отводов обмотки автотрансформатора и ключевых элементов становится тяжёлым, громоздким и дорогим.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации