Андрей Смирнов
Время чтения: ~13 мин.
Просмотров: 0

Маркировка и применение различных марок стали

Стали углеродистые инструментальные

Из инструментальных углеродистых сталей получают горячекатаную, кованую и калиброванную сталь, сталь серебрянку, сталь для сердечников, а также слитки, листы, ленту, проволоку и другую продукцию. Из этих сталей изготовляют режущий инструмент для обработки металлов, дерева и пластмасс, измерительный инструмент, штампы для холодного деформирования.

Теплостойкость инструментальных углеродистых сталей не превышает 200°С, при нагревании выше этой температуры они теряют свою твердость, а следовательно режущие свойства и износостойкость.

Инструментальные углеродистые стали условно можно разделить на две группы (ГОСТ 1435-99): качественные стали У7, У8, У8Г, У9, У10, У11, У12 и У13 и высококачественные марок У7А, У8А, У8ГА, У9А, У10А, У НА, У12А и У13А.

В качественных инструментальных углеродистых сталях допускается содержание 0,03% серы и 0,035% фосфора, в высококачественных – 0,02% серы и 0,03% фосфора. Стали, полученные методом электрошлакового переплава, содержат до 0,015% серы. В зависимости от содержания хрома, никеля и меди инструментальные углеродистые стали подразделяются на пять групп: 1-я – качественные стали всех марок, предназначенные для изготовления продукции всех видов (кроме патенти- рованной проволоки и ленты); 2-я – высококачественные стали всех марок, предназначенные для тех же целей, что и стали первой группы; 3-я – стали марок У10А и У12А для изготовления сердечников; 4-я – стали всех марок для производства патентированной проволоки и ленты; 5-я – стали марок У7÷У13 для изготовления горяче- и холоднокатаных листов и лент, в том числе термически обработанных толщиной до 2,5 мм (кроме патентированной ленты), а также стали этих марок для производства горячекатаной и кованой сортовой стали и холоднотянутой шлифованной стали (серебрянки).

Инструментальная сталь должна обладать высокой твердостью (63÷64 HRC3), значительно превышающей твердость обрабатываемого материала, износостойкостью и теплостойкостью (способностью сохранять свойства при высоких температурах).

Измерительный инструмент, изготовленный из такой стали, должен быть прочным (ав = 590÷640 МПа), длительное время сохранять заданные размеры и форму. Рабочие детали штампов и накатных роликов для холодного деформирования (вытяжки, гибки, высадки, пробивки отверстий, накатки, раскатки), сделанные из этой стали, должны иметь высокую твердость, обладать износостойкостью при достаточной вязкости. Все это достигается путем закалки с отпуском, а для измерительного инструмента и за счет искусственного старения. В табл. 12 приведены свойства углеродистой инструментальной стали, в табл. 13- примерное назначение инструментальной углеродистой стали.

Таблица 12. Свойства стали углеродистой инструментальной (ГОСТ 1435 — 74)

Марка стали Механические свойства
σт σв

МПа

δ, % Дж/см3 HRС
У7А 630 21 63
У8А 590 63
У10А 590 23 63
УНА 63
У12А 640 28 64
У13А 64

Таблица 13. Примерное назначение стали углеродистой инструментальной

Марка стали Назаначение
У9 Деревообрабатывающий режущий инструмент (сверла, фрезы, ножи) и ножовочные полотна для обработки стали
У10, У11 и У12 Металлорежущий инструмент (фасонные резцы, сверла, метчики, плашки, развертки, фрезы, напильники и ходовые винты прецизионных станков)
У13 Бритвенные ножи, лезвийный хирургический инструмент и напильники
У7 и У8 Слесарные молотки, зубила, губки тисков, шаблоны, скобы
У8, У9 и У10 Детали микрометрического инструмента, гладкие и резьбовые калибры, цанги, фрикционные диски, пружины и др.

Как правило, изготовлению инструмента предшествует отжиг на зернистый цементит, который способствует лучшей обрабатываемости резанием и уменьшает коробление деталей при закалке.

Это интересно: Устройство и сфера применения стального троса — объясняем обстоятельно

Технология изготовления

Изготовление стали в металлургической промышленности производится различными способами. Каждый метод производства отличается, в зависимости от применяемого оборудования. Так, все оборудование для производства углеродистых сталей можно разделить на три типа:

  • Конверторные плавильные печи.
  • Печи мартеновского типа.
  • Электрические печи.

Конверторные

Конверторные печи осуществляют расплавление всего состава сплава. При таком методе расплавленная масса подвергается обработке техническим кислородом. Для очистки раскаленной массы от разнообразных примесей в нее добавляют известь. Так удается превратить примеси в шлак. Во время производственного процесса активно происходит процесс окисления металла. Это провоцирует выделение большого количества угара.

Изготовление углеродистых сталей в печах конверторного типа имеет существенный недостаток. К нему относится то, что при работе происходит выделение большого количества пыли. Это приводит к необходимости установки дополнительных фильтровальных установок, что влечет за собой затраты денежных средств. Несмотря на это, конверторный метод имеет высокую производительность, и широко применяется в металлургии.

Мартеновские

Получение различных марок углеродистой стали с использованием печей мартеновского типа дает возможность получить конечный продукт высокого качества. Производственный процесс происходит следующим образом:

  • В специализированный отсек печи загружаются составляющие сплава: чугун, стальной лом и т. д.;
  • Весь состав нагревается до высокой температуры;
  • Под воздействием температуры все составляющие превращаются в однородную раскаленную массу;
  • При плавлении происходит взаимодействие всех компонентов сплава железа и углерода;
  • Материал, получившийся в результате химического взаимодействия, выходит из печи.

Принцип работы мартеновской печи

Электрические

Способ получения различных марок углеродистой стали в электрических печах отличается от вышеперечисленных. Его отличие состоит в способе нагрева состава. Применение электричества для разогрева компонентов снижает окисляемость металла. Это значительно уменьшает количество водорода в составе металла, что улучшает структуру сплава и влияет на качество окончательного продукта.

Способы изготовления стали и технологии

От технологии изготовления стали зависят структура этого сплава, его состав и свойства. Обычные стали производятся в мартеновских печах или конвертерах. Как правило, они насыщены значительным количеством неметаллических примесей.

Высококачественные сплавы производят с использованием электропечей. Особовысококачественные легированные стали, содержащие минимальное количество вредных примесей, производятся в процессе электрошлаковой переплавки.
При производстве сталей используют процесс раскисления, направленный на выведение кислорода из структуры сплава.  От количества удалённого кислорода зависит, какие получаются стали: малораскисленные, совершенно раскисленные или полураскисленные. Их классифицируют, как кипящие, спокойные и полуспокойные.

Марки стали

Несмотря на то, что сталь однозначно признаётся самым востребованным сплавом железа, единая система маркировки её видов по настоящее время не сложилась. Наиболее проста и популярна  буквенно-численная маркировка.

Качественные углеродистые стали маркируют с использованием литеры «У» и двузначным числовым значением (в сотых %) уровня углерода в их составе (У11).В марке обычных углеродистых сталей за буквой следует число, указывающее на количество углерода в десятых %  — У8.

Литеры используются и в маркировке легированных сталей. Они указывают на основной элемент, применяемый для легирования. Идущая следом цифра показывает концентрацию данного элемента в составе стали. Перед литерой ставят цифру, соответствующую доле углерода в металле в сотых %.

Например, стоящая в конце марки высококачественного сплава буква «А» указывает на его качество. Эта же литера в середине марки уведомляет об основном  элементе легирования, в данном случае им является азот. Литера в начале марки сообщает о том, что это автоматная сталь.

Литера «Ш» в конце маркировки, прописанная через дефис, говорит о том, что это особовысококачественный сплав. Качественные стали, не имеют в маркировке литер «А» и «Ш». Кроме того, существует дополнительная маркировка, указывающая на особые характеристики сталей. Так, например, магнитные сплавы отмечают литерой «Е», а электротехнические — «Э».

Буквенно-числовая маркировка, пожалуй, одна из самых простых и понятных для потребителя. Другие, более сложные, доступны только для специалистов.

3 Популярные и редкие марки легированных инструментальных сплавов

К числу наиболее востребованных ЛИС относят сплавы 11ХФ, служащие для производства режущих приспособлений (в частности, метчиков) сечением не более трех сантиметров, 4ХС (штампы горячей вытяжки, ножницы для резки металла, зубила), 12Х1 (шаблоны, калибры, плитки и иные виды измерительных инструментов), 6Х4М2ФС (накатной, высадочный и вырубной инструмент, включая пневматические зубила).

Гравировальные приспособления, бритвенные лезвия, всевозможные шаберы и хирургические острые ножи изготавливают из сплава 13Х, деревообрабатывающие инструменты – из 7ХФ, кернеры, обрезные «холодные» матрицы, ножи для резки стали и штемпели – из 8ХФ. А вот сталь Х идеальна для производства долбежных и строгальных резцов, применяемых в ремонтных и лекальных цехах, калиберных колец и цилиндрических гладких калибров, максимально твердых пальцевых и эксцентриковых кулачков.

Гравировальные приспособления

Из других популярных марок инструментальных сплавов выпускают:

  • маленькие (толщиной либо сечением до 7 сантиметров) вырубные штампы – ХГС;
  • ножи для предприятий бумажной промышленности, технологическая оснастка, инструменты для обработки древесины вручную – ХВСГ;
  • граверные и прошивные инструменты – ХВ4;
  • деревообрабатывающие рамные и дисковые пилы – 9ХФМ;
  • круглые развертки и плашки – ХВСГФ;
  • прошивные пуансоны, фрезы и резцы, используемые на малых скоростях резки металлических изделий, гравировальный инструмент высокой твердости – ХВ4Ф;
  • ножовочные полотна и пилы (ленточные) по металлу – В2Ф, 9Х5ВФ (их также применяют при выпуске других приспособлений, с помощью которых обрабатывают древесину);
  • штамповочный и режущий инструмент – 9Г2Ф.

Ножи из инструментальных сплавов

Молотовые штампы, эксплуатируемые на молотах пневматической и паровоздушной конструкции, делают из следующих ЛИС – 5ХНВС, 5ХНВ, 4ХМНФС, 3Х2МНФ. Их, кроме того, часто используют для выпуска матриц и бандажей для молотов, внутренних втулок с крупными геометрическими параметрами и штампов контейнерной формы.

К редким сплавам относят такие легированные стали: 11Х4В2МФ3С2 (резьбо- и шлиценакатные приспособления), 05Х12Н6Д2МФСГТ (элементы пресс-форм для изготовления пластмассовых и резинотехнических конструкций), 8Х4В2МФС2 (резьбонакатные ролики, матрицы, работающие пол давлением не выше 2300 МПа), 6Х3МФС (чеканочные штампы, штемпели).

2 Классификация инструментальных сталей

Все инструментальные сплавы, как понятно из вышеизложенных фактов, имеют собственные характеристики и свойства. Именно по ним они и классифицируются. Выделяют 5  групп сталей для производства инструмента:

  • вязкие и теплостойкие: к ним относят за- и доэвтектоидные сплавы, легированные молибденом, вольфрамом, хромом, со средним либо малым содержанием углерода;
  • нетеплостойкие, высокотвердые и вязкие: содержание углерода – среднее, малопрокаливаемые, низколегированные;
  • теплостойкие, высокотвердые и износостойкие: быстрорежущие высоколегированные, а также ледебуритные сплавы (углерода в них обычно много – более 3%);
  • среднетеплостойкие, твердые и износостойкие:  от 2 до 3 процентов углерода, хрома – от 5 до 12 процентов, к таковым относят заэвтектоидные и ледебуритные составы;
  • нетеплостойкие и твердые: малолегированные, нелегированные, и заэвтектоидные стали с большим количеством углерода.

Если сплав имеет высокую твердость, его нежелательно использовать для инструмента, эксплуатируемого при ударных нагрузках, так как такие составы не считаются вязкими. По уровню твердости можно выделить два вида сталей:

  • повышенновязкие (углерода в них 0,4–0,7%);
  • износостойкие и высокотвердые (содержание углерода – 0,7–1,5%).

Прокаливаемость также имеет огромное значение для классификации инструментальных сталей. Легированные составы описываются высокой (критический диаметр – 80–100 мм) и повышенной (50–80 мм) прокаливаемостью, углеродистые сплавы с вольфрамом – низкой (10–25 мм).

2 Быстрорежущая сталь – маркировка

Сталь для производства быстрорежущего инструмента была изобретена в Британии. По-английски ее название звучит как «rapid steel» (рапид в переводе означает скорость). По этой причине быстрорежущие стали имеют такие марки, которые начинаются с заглавной литеры Р. После нее числом указывается (в процентах), сколько содержится вольфрама в сплаве. Далее идут буквы Ф, М и К с числами, определяющими, соответственно, процент ванадия, молибдена и кобальта.

В зависимости от содержания тех или иных химических элементов в сплаве можно поделить на три группы все быстрорежущие стали, маркировка четко показывает, к какому виду относится конкретная сталь. Она может быть с содержанием:

  • кобальта до 10 % и вольфрама до 22 % (стали Р6М5Ф2К8, Р10М4Ф3К10 и другие);
  • кобальта не более 5 % и вольфрама до 18 % (Р9К5, Р10Ф5К5, Р18Ф2К5);
  • без кобальта с вольфрамом не более 16 % (Р65М, Р12, Р18, Р9).

Режущие возможности быстрорежущих сплавов зависят, прежде всего, от содержания в них вольфрама. Стоит знать, что при высоком содержании этого элемента, а также кобальта и ванадия отмечается карбидная неоднородность стали, способная привести к тому, что режущие кромки инструмента при эксплуатации будут раскрашиваться. Содержащие же молибден составы практически по всей длине пореза имеют стабильные показатели твердости.

Для производства высокоточных инструментов с повышенными требованиями к их технологическим возможностям обычно применяется сталь Р18. Она характеризуется отличной износостойкостью за счет мелкозернистой структуры. Закалка стали Р18 проходит без явления перегревания, что может наблюдаться при закаливании иных марок быстрорежущих сплавов. Но себестоимость ее выпуска достаточно высока, поэтому зачастую ее заменяют сталью Р9.

Р9 примерно аналогична по режущим свойствам Р18. Причем в отожженном состоянии она очень легко поддается деформации (пластической). Недостатком Р18 можно считать то, что шлифование металла с таким составом затрудняется, а значит, сталь нельзя применять для высокоточного инструмента. А вот Р12 характеризуется хорошей прочностью, пластичностью в горячем состоянии и вязкостью. По основным параметрам она также похожа на Р18.

Легированная инструментальная сталь

По сравнению с вышеописанной легированная обладает большей толщиной прокаливаемого слоя и меньшей склонностью к перегреву, что позволяет существенно снизить риск образования трещин во время термообработки инструмента. Благодаря этому минимальный габаритный размер инструмента увеличивается с 12 до 40 мм.

Низколегированные стали марок типа 11Х и 13Х рекомендуются для изготовления метчиков, ножей и напильников толщиной 1-15 мм. Особенно если указанный инструмент при этом имеет большую длину.

Стали 9ХС и ХВГС обладают повышенной красностойкостью с критической температурой 250 ºС. Они используются для сверл, плашек, гребенок и прочего инструмента диаметром до 80 мм. Недостатком их является небольшая хрупкость в отожжённом состоянии и чувствительность к образованию трещин во время шлифовки.

Также легированная инструментальная сталь отлично зарекомендовала себя в изготовлении разного рода измерительного инструмента — штангенциркули, линейки, скобы и прочее — за счет низкого значения коэффициента теплового расширения. Наиболее подходящими из них послужили стали типа Х и ХГ.

1 Маркировка и важные особенности инструментальных легированных сплавов

Описываемые стали располагают некоторыми преимуществами, которые отличают их от углеродистых инструментальных стальных композиций. Сверла, фрезы и резцы из ЛИС разрешается применять на высоких скоростях резания металлических заготовок. А вот углеродистые инструментальные стали не позволяют этого сделать, так как при нагреве до 200 °С рабочие приспособления из них утрачивают свою первоначальную твердость.

Более высокими эксплуатационными характеристиками обладают и штампы, сделанные из ЛИС. Они великолепно сопротивляются ударным нагрузкам. При этом стоит заметить, что углеродистые штампы имеют достаточно высокую прочностью и твердость.

Штамп из ЛИС

Применение легированных инструментальных сталей рекомендовано и тогда, когда требуется получить надежные инструменты большой длины, но малой толщины (развертки, метчики и так далее). Такие приспособления из ЛИС редко выходят из строя за счет того, что не подвержены высокой хрупкости.

Марки легированных сплавов для инструментов зашифровываются кодом из цифр и литер. На десятые доли процента содержания углерода указывает первая цифра. Если данный химический элемент присутствует в ЛИС в количестве более 1 %, цифра в маркировке отсутствует. Возьмем для примера распространенные марки инструментальных сплавов ХГ и 9ХС. Первая сталь (ХГ) содержит более 1 % углерода (так как нет цифры перед маркировкой). А во второй этот элемент присутствует в количестве 0,9 %.

Маркировка стали

Литеры, которые входят в разные марки ЛИС, обозначают следующие химэлементы (легирующие компоненты):

  • Г – марганец;
  • Х – хром;
  • Ф – ванадий;
  • В – вольфрам;
  • М – молибден;
  • С – кремний;
  • Н – никель.

Цифры после любых из этих компонентов указывают на то, сколько их имеется в стали (в целых процентах). Когда цифра не ставится, это означает, что легирующая добавка содержится в количестве не более 1 %. Как видим, «расшифровать» марки ЛИС совсем несложно.

Область применения различных марок быстрорежущих сталей

Рассматривая применение износостойкого металла следует уделить внимание тому, что конкретный состав металла определяет его эксплуатационные качества. Инструмент изготовленный из подобного металла может выдерживать длительную эксплуатацию

Режущий инструмент из быстрорежущей стали

Область применения достаточно обширна:

  1. Изготовление сверл. Сверла имеют достаточно сложную форму и конструкцию, которая получается путем литья.
  2. Изготовление резцов. Сегодня для удешевления резцов их основная часть изготавливается из недорого металла, и только режущая кромка из износостойкого материала.
  3. Изготовление напаек для режущего инструмента. В некоторые случаях режущая кромка сменная.
  4. Изготовление фрез. Фрезы также получаются методом литья расплавленного металла.

Сегодня, при повсеместной установке станков с ЧПУ, режущий инструмент повышенной устойчивости является единственным выходом из сложившейся ситуации, когда высокие скорости обработки создают проблемы.

3 Производство быстрорежущих сталей и их обработка

Сейчас применяются две технологии изготовления быстрорежущей стали:

  • распыление азотом струи жидкого металла (порошковая методика);
  • разливка в слитки, прокатка и дальнейшая проковка (классический метод).

Чаще используется классическая методика, которая предполагает учет ряда особенностей обработки сталей, относимых к группе быстрорежущих. Во-первых, необходимо избежать карбидной ликвации в готовом сплаве, вызываемой недостаточной проковкой металла. Во-вторых, закалка быстрорежущей стали в обязательном порядке предваряется отжигом. Если не придерживаться данного требования, готовые изделия будут хрупкими из-за так называемого «нафталинового излома».

Непосредственно закалка осуществляется при температурах, которые не становятся причиной роста зерна в α-железе, и при этом гарантируют наибольшую растворимость в нем легирующих добавок. Закаленная сталь имеет в своей структуре до 30 процентов аустенита, который понижает показатели теплопроводности материала и твердости инструмента. «Убрать» лишний аустенит можно двумя способами:

  • многократным отпуском: несколько подряд идущих процедур нагрева, выдержки и охлаждения;
  • холодом: перед отпуском металл охлаждается до – 80 °C.

Указанные процедуры не дают возможности полностью удалить аустенит из стали, но обеспечивают значительное уменьшение его количества.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации