Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Разбираемся в электронно лучевой сварке

1 Лазерная сварка – суть процесса и его достоинства

При выполнении операции соединения материалов лазерным лучом используются разные по виду лазерные агрегаты:

  • газовые;
  • твердотельные;
  • полупроводниковые.

Непосредственно процесс базируется на том, что при направлении энергии квантов на свариваемые изделия наблюдается поглощение ими этой самой энергии, приводящее к увеличению температуры поверхности деталей за счет образования теплоты.

Лазерная сварка позволяет выполнять соединение конструкций с весьма крупными габаритами, так как для ее выполнения не требуется вакуум. Кроме того, использование луча лазера характеризуется следующими важными достоинствами:

  • получение в процессе сварки по-настоящему безупречного качества соединения изделий из таких материалов, которые иными сварочными методами свариваются очень и очень плохо (популярная стыковая сварка, например, по своим качественным показателям не идет ни в какое сравнение с лазерной);
  • отсутствие на обрабатываемой поверхности холодных и горячих трещин за счет того, что лазер обеспечивает большие скорости охлаждения и нагрева металла (при этом на околошовный участок оказывается несущественное тепловое влияние);
  • легкая регулировка и управление лучом лазера посредством оптических зеркальных комплексов дают возможность направлять тепловое воздействие в наиболее труднодоступные области конструкции, а значит, сварка может производиться практически в любом ее месте;
  • лазерный луч гарантирует стабильное образование соединительного шва, так как на его характеристики не оказывают влияния магнитные поля, как это отмечается при выполнении сварочных работ при помощи электродуги либо электронного луча.

Также стоит отметить и то, что сварка изделий с применением лазерного оборудования обеспечивает минимальный уровень деформации конструкций, уникальную прочность (технологическую) полученных соединений.

Стандартный газовый лазер, используемый в настоящее время, представляет собой достаточно простой агрегат. Выполнен он в виде трубки, в которую накачивают газ. Данная трубка ограничивается параллельными зеркалами с обеих сторон (с одной стороны устанавливают полупрозрачное зеркало, с другой – полностью непрозрачное). В описанную конструкцию вводят электроды, между ними формируются так называемые «быстрые электроны». Они-то и возбуждают молекулы газа, которые создают кванты света, возвращаясь в свое обычное состояние. Лазерные установки газового типа способны функционировать непрерывно.

Добавим – лазерная технология может выполняться по двум схемам:

  • сварка в среде защитных газов;
  • сварка на воздухе.

Первая из указанных технологий позволяет осуществлять соединение самых разных металлов, которые ранее считались непригодными для сваривания (сварка нержавеющей стали, металлов тугоплавкой группы и т. д.).

Особенности

Поскольку технология не самая простая, ее сопровождают некоторые нюансы, которые нужно учесть для полного понимания сути. Первый нюанс заключается в том, что вся сварка происходит в среде вакуума. От этого поверхность деталей идеально чистая. И второй нюанс — детали нагреваются до крайне высоких температур. В итоге мы получаем шов минимальной толщины, который при этом еще и быстро формируется. Это очень хорошо.

Благодаря этим особенностям ЭЛС сварку можно применять при сварке самых разнообразных металлов. У двух деталей может быть разная толщина, состав и даже температура плавления. Шов все равно получится качественным. Минимальная толщина для сварки составляет 0,02 миллиметра. А максимальная — 100 миллиметров. Диапазон очень большой, можно варить большинство деталей. Это все, что вам нужно учесть.

Производители

Ниже перечислены крупнейшие компании-производители ЭЛП (в алфавитном порядке) по состоянию на конец XX века[значимость факта?]:

  • Burle, Ланкастер, Пенсильвания;
  • CRT Scientific, Ван-Найс, Калифорния;
  • Hughes Display Products, Лексингтон, Кентукки;
  • Hitachi, Япония;
  • Image & Sensing Technology, Хорсхедс, Нью-Йорк;
  • ITT, Роанок, Виргиния;
  • Litton, Сан-Карлос, Калифорния;
  • Magnavox/General Atronics, Филадельфия, Пенсильвания;
  • Matsushita, Япония;
  • Philips, Голландия;
  • Philips Components, Слейтерсвилл, Род-Айленд;
  • Raytheon, Куинси, Массачусетс;
  • Sony, Япония;
  • Thomas Electronics, Уэйн, Нью-Джерси;
  • , Франция;
  • Thomson, Ланкастер, Пенсильвания;
  • Toshiba, Япония;
  • , Стоун-Маунтин, Джорджия;
  • Westinghouse, Electronic Tube Division, Элмайра, Нью-Йорк;
  • , Rauland Division, Мелроуз-Парк, Иллинойс.

Техника электронно-лучевой сварки

Сварку электронным лучом можно успешно применять в нижнем положении вертикальным лучом, вертикальным и горизонтальным швом на вертикальной стене (горизонтальным лучом) с неполным и сквозным проплавлением. Сварка в нижнем положении рекомендуется для толщин до 40 (стали) и до 80 мм (титановые и алюминиевые сплавы). Горизонтальным лучом со сквозным проплавлением сваривают металлы

толщиной до 400 мм. Типичная взаимосвязь глубины проплавления с параметрами сварки представлена на рис. 5.6. Конструкция соединения для однопроходной ЭЛС выполняется с учетом глубокого проникновения луча в металл (рис. 5.7). Толщина зазора в стыке составляет 0,1—0,2 мм при глубине шва ≤20÷30 мм и 0,3 мм при глубине шва >30 мм. В общем случае, зазор должен быть меньше диаметра луча.

Рис. 5.7. Типы конструкций стыка при ЭЛС

При ЭЛС используют ряд технологических приемов для улучшения качества шва:

  • сварку наклонным лучом (отклонение в направлении перемещения на 5—7°) для уменьшения пор и несплошностей и создания более равномерных условий кристаллизации;

  • сварку с присадкой для легирования металла шва или восстановления концентрации легкоиспаряющихся в вакууме элементов;

  • сварку на дисперсной подкладке для улучшения выхода паров и газов из канала (подкладка толщиной ~40 мм из гранул или рубленой сварочной проволоки);

  • сварку в узкую разделку (0,8—8 мм) в нижнем положении за счет наплавки присадки в прямоугольную разделку кромок;

  • тандемную сварку двумя электронными пушками, из которых одна осуществляет проплавление, а вторая (меньшей мощности) формирует либо корень канала, либо хвостовую часть ванны. При квазитандемной сварке используют один луч, но периодически отклоняя его, например в хвост ванны, получают практически два луча;

  • предварительные проходы для проверки позиционирования луча и очистки и обезгаживания кромок свариваемых металлов;

  • двустороннюю сварку одновременно или последовательно двух противоположных сторон стыка примерно на половину толщины стыка. Одновременную двустороннюю сварку осуществляют как с общей ванной, так и с раздельными;

  • развертку электронного луча: продольную, поперечную, Х-образную, круговую, по эллипсу, дуге и т. п. с амплитудой порядка диаметра луча и частотами до 1—2 кГц для создания более благоприятных газо- и гидродинамических условий формирования канала (резонансные режимы нагрева). Двойное преломление луча в процессе развертки позволяет, например, расширить корневую часть канала, что необходимо для подавления корневых дефектов;

  • расщепление луча (за счет отклоняющей системы) для одновременной сварки двух и более стыков (точек);

  • модуляцию тока луча (обычно с частотой 1—100 Гц) для управления теплоподачей в сварной шов;

  • «косметическое» заглаживание — повторный проход для ремонта видимых дефектов шва как с внешней, так и с внутренней сторон. В некоторых случаях «косметические» проходы осуществляют с присадкой.

Особенности технологии сварки цветных, тугоплавких металлов и сплавов, а также конструкционных сталей подробно изложены в монографии: Электронно-лучевая сварка/О. К. Назаренко, А. А. Кайдалов, С. Н. Ковбасенко и др./Под ред. Б. Е. Патона.— Киев: Наукова думка, 1987.— 256 с.

Волченко В.Н. Сварка и свариваемые материалы, том 2.

См. также:

Оборудование для электронно-лучевой сварки

Классификация ЭЛП

Классификация по назначению

Передающие электронно-лучевые приборы преобразуют оптическое изображение в электрический сигнал.

  • Диссектор («трубка мгновенного действия») — исторически первый тип передающей трубки, использовавшийся для астрономических наблюдений, в устройствах промышленной автоматики и для сканирования документов;
  • Иконоскоп — исторически первый тип передающей телевизионной трубки;
  • Ортикон, суперортикон, видикон — основные типы передающих трубок, применявшихся в телевидении до перехода на твердотельные преобразователи;
  • Специализированные приборы, например, моноскоп — трубка для преобразования в электрический сигнал единственного (отсюда название прибора) изображения, сформированного внутри трубки в процессе изготовления — как правило, испытательной таблицы.

Приёмные электронно-лучевые приборы преобразуют электрический сигнал в оптическое (видимое) изображение:

  • Осциллографическая трубка — ЭЛП с электростатическим отклонением луча, применяемые для визуализации формы электрических сигналов;
  • Кинескоп — приёмная трубка телевизионной системы с магнитной отклоняющей системой и строчной развёрткой изображения;
  • Квантоскоп (лазерный кинескоп) — разновидность кинескопа, экран которого представляет собой матрицу полупроводниковых лазеров, накачиваемых электронным лучом. Квантоскопы применяются в проекторах изображения.
  • Индикаторная электронно-лучевая трубка — приёмная трубка радиолокационной системы с магнитной отклоняющей системой и круговой развёрткой, а также разнообразные специализированные индикаторы, знакогенерирующие трубки и т. п.;
  • Знакогенерирующие (знакопечатающие) трубки (характрон, тайпотрон и их аналоги);
  • Кадроскоп — электронно-лучевая трубка с видимым изображением, предназначенная для настройки блоков разверток и фокусировки луча в аппаратуре, использующей электронно-лучевые трубки без видимого изображения (таких как графеконы, моноскопы, потенциалоскопы). Кадроскоп имеет цоколевку и установочные размеры, аналогичные электронно-лучевой трубке, используемой в аппаратуре. Основная ЭЛТ и кадроскоп подбираются по параметрам с очень высокой точностью и поставляются только комплектно. При настройке вместо основной трубки подключают кадроскоп.
  • Печатающие ЭЛП — приборы для переноса изображения, сформированного электронным лучом на твёрдый носитель, например, бумагу ксерографическим методом.

Электронно-лучевые приборы без видимого изображения

  • Запоминающая трубка записывает информацию на пространственную мишень, хранит её в течение заданного времени, и (в трубках со считыванием) воспроизводит или считывает её электронным лучом. Различные трубки этого подкласса использовались как для хранения, обработки и воспроизведения оптических изображений, так и как двоичные запоминающие устройства ранних компьютеров.
  • Функциональные ЭЛТ — разновидность аналоговой ЭВМ, в которой взаимодействие электронного луча, мишеней и системы отклоняющих электродов используется для вычисления значений различных функций от двух или нескольких переменных.

По способу фокусировки и отклонения

По способу фокусировки и отклонения луча ЭЛТ делятся на:

  • трубки с магнитным управлением — для фокусировки и отклонения луча используется магнитное поле;
  • трубки с электростатическим отклонением — для фокусировки и отклонения луча используется электрическое поле;
  • в некоторых приборах (например, в кинескопах и индикаторных трубках радиолокаторов) используется комбинированное управление лучом: электростатическая фокусировка и магнитное отклонение луча.

Брюэр Дж.Р. Гринич Д.С. Херриот Д.Р. Электронно-лучевая технология в изготовлении микроэлектронных приборов

Предисловие

Сущность современной микроэлектроники со всем ее многообразием можно выразить одним емким словом: интеграция. В 60-х годах кристаллы интегральных схем (ИС) содержали сотни элементов, в 70-х годах — тысячи и десятки тысяч, а за последние годы созданы кристаллы сверхбольших интегральных схем с сотнями тысяч элементов. Рост степени интеграции характеризуется не только увеличением площади кристаллов ИС, но в гораздо большей мере стремительным уменьшением размеров элементов до микронных и субмикронных пределов, когда начинают проявляться новые физические эффекты. Прогресс технологии, позволивший создать сложные ИС с элементами столь малого размера, связан в первую очередь с литографией. Элементы с минимальными размерами 3-5 мкм легко формируются методами фотолитографии. При дальнейшем уменьшении размеров начинают сказываться дифракционные ограничения, связанные с использованием в фотолитографии УФ излучения. Стремление отодвинуть дифракционный предел привело к разработке литографических методов, базирующихся на излучениях с гораздо меньшей длиной волны — электронного и рентгеновского. Электронно-лучевая литография с момента зарождения уже прошла путь в 13 лет. Много это или мало? За этот срок разработаны прецизионные электронно-лучевые установки; продемонстрированы рекордные результаты в специальных условиях получены линии шириною всего 0,008 мкм; с применением электронолитографии созданы образцы сложнейших микроэлектронных устройств; изготовлены тысячи фотошаблонов с микронными размерами элементов. Но с другой стороны, электронно-лучевая литография еще находится на лабораторном уровне; производительность установок мала, а стоимость слишком велика; оптимальные области применения метода определены нечетко. Как же относиться конструкторам оборудования, технологам и разработчикам приборов к электронно-лучевой литографии?

Ответ на этот вопрос достаточно исчерпывающе дает предлагаемая читателю книга под ред. Дж. Брюэра, посвященная электронно-лучевой литографии, и не просто литографии как методу, но и ее применению в микроэлектронной технологии. Книга представляет сборник, каждая глава которого написана специалистом по данному вопросу. Глава 1 принадлежит самому редактору и кратко освещает проблему в целом (что весьма удобно для малоподготовленного читателя). После исторического обзора тенденций развития микроэлектроники рассмотрена электронно-лучевая литография как наиболее перспективный технологический метод создания сложных микроэлектронных устройств. Характерна трезвая позиция автора: наряду с достижениями отмечаются и ограничения метода; рассматривается также экономическая сторона проблемы. В гл. 2 обсуждается процесс взаимодействия электронного луча с резистом и подложкой, характеристики резистов, особенности электронно-лучевой литографии (в частности, так называемый эффект близости), способы совмещения. Глава 3 посвящена электронно-лучевым установкам их устройству, способам фокусирования и управления лучом; сравниваются два основных типа установок: с непрерывным и векторным сканированием; приводятся данные современных установок.

Преимущества и недостатки

Преимущества лазерной сварки сделали данную технологию популярной и востребованной. Но она также как и другие сварочные работы имеет негативные стороны, которые обязательно нужно предварительно рассмотреть.

Среди преимуществ сварки можно выделить:

  1. Сварка лазерным лучом может использоваться для разнообразных материалов — от металлов и магнитных сплавов до термопластов, стекла, керамики.
  2. Наблюдается высокая точность и стабильность траектории пятна нагревания.
  3. Небольшой размер сварного соединения. Именно это делает его незаметным.
  4. Отсутствует нагревание околошовной области. Вследствие этого наблюдается минимальная деформация свариваемых деталей.
  5. При проведении нагревании не образуются продукты сгорания, не проявляется рентгеновское излучение.
  6. Высокая химическая чистота сварочного процесса. Это связано с тем, что во время сварки не используются присадки, флюсы, электроды.
  7. Подходит для сваривания в труднодоступных местах, может применяться на большом удалении от зоны расположения лазера.
  8. Может применяться для сварки элементов, которые находятся за прозрачными материалами.
  9. Быстрая перенастройка при переходе на изготовления нового изделия.
  10. Сварные швы имеют высокое качество и прочность.

Несмотря на то, что лазерная сварка является востребованным методом, который отлично подходит для ремонта кузова автомобиля, для работы с различными конструкциями, металлическими изделиями, все же стоит рассмотреть плюсы и минусы технологии. Как мы поняли достоинств у нее достаточно много, но не стоит забывать про недостатки.

Особое внимание стоит обратить на следующие негативные качества:

  • оборудование лазерной сварки имеет высокую стоимость. Также комплектующие, запасные части стоит достаточно дорого. По этой причине эта технология применяется только на производствах, предприятиях. А некоторые умельца прибегают к изготовлению лазерной сварки своими руками, но это требует некоторых знаний, а также необходимо иметь схемы, чертежи, инструкции;
  • лазерно-дуговая сварка обладает низким показателем КПД. Для твердотельных сплавов он составляет 1 %, а для газовых он может составлять 10 %;
  • зависимость эффективности сварочного процесса от отражающей способности заготовки;
  • высокие требования к квалификации обслуживающего персонала;
  • особые требования к помещениям, в которых размещается лазерное оборудование. Это относится к показателям вибрации, влажности и запыленности.

Электронно-лучевые пушки (ЭЛП)

ЭЛП служат для генерации и формирования электронного луча. Основные узлы ЭЛП: генератор электронови система проведения луча (рис. 5.10). Генератор электронов состоит из катода, управляющего электрода, или электрода Венельта, анода. Система проведения луча включает юстирующие, фокусирующие и отклоняющие катушки.

Катоды выполняются накальными (термокатоды прямого или косвенного накала) или плазменными. Материал термокатодов — вольфрам, тантал, сплавы этих металлов с рением, гексаборид лантана (LaB6).

В случае термокатодов прямого нагрева нагрев осуществляется за счет пропускания через катод тока накала, а в термокатодах косвенного нагрева — за счет бомбардировки катода электронами от вспомогательного катода Материал высоковольтного изолятора — керамика, стекло, специальные пластмассы. Типичные материалы для анода и управляющего электрода — нержавеющая сталь, медь.

Ускоряющее напряжение приложено между анодом и катодом. Управление током луча осуществляется, как правило, путем изменения потенциала управляющего электрода по отношению к катоду.

Рис. 5.10. Типичная структура ЭЛП:К — катод; УЭ — управляющий электрод; ЮК — юстирующие катушки; А — анод. ЭЛ — электронный луч; ФК — фокусирующие катушки; ОК — отклоняющие катушки; И — свариваемое изделие

5 Сварка взрывом – перспективная инновация

Технология, которая появилась совсем недавно, и была признана специалистами одним из наиболее перспективных вариантов выполнения сварочных работ. Взрывная сварка – это способ соединения металлов под влиянием энергии, высвобождающейся в результате взрыва специального соединения.

Такой сварочный процесс обычно выполняют во взрывных спецкамерах либо на подземных и открытых полигонах, которые располагаются далеко от промышленных и жилых объектов

Подобные предосторожности важны, так как при взрыве фиксируется небезопасный разлет осколков, есть вероятность сейсмических возмущений (если заряд взрывчатого соединения достаточно велик), нередко наблюдается и ударная волна, способная разрушить какое-либо сооружение или нанести вред здоровью человека

Взрывные сварочные мероприятия теоретически позволяют соединять все известные сейчас металлы. Но при этом необходимо учитывать то, что сваренные изделия могут сильно нагреться, что приведет к появлению интерметаллидных фаз и образованию в зоне соединения весьма активных диффузионных явлений.

Технология

Лучевые технологии

В последние десятилетия широкое распространение получили лучевые методы обработки, использующие для воздействия на заготовку лазерный и электронный лучи, которые обеспечивают плотность энергии на несколько порядков выше, чем другие источники (см. таблицу).

Плотность энергии различных тепловых источников

Большие плотности энергии обеспечиваются при небольшой мощности излучения (0,1-100 кВт) за счет фокусировки лучей на малой площади — около 0.1 мм2. Поэтому лучевые методы обработки используют для вырезки высокоточных (прецизионных) деталей, получения отверстий малого размера (менее 0,5 мм), разрезания труднообрабатываемых материалов, точной сварки, упрочнения и легирования поверхностей деталей.

Лазерная обработка материалов проводится при помощи светового луча, излучаемого оптическим квантовым генератором (лазером), и основана на его термическом действии (рис. 16).

Рис. 16. Схема лезерной обработки: 1 — оптический квантовый генератор; 2 — диафрагма; 3 — оптическая система; 4 — защитное стекло; 5 — деталь

При попадании на поверхность световой луч частично поглощается ею и частично отражается от нее. Поглощение поверхностью энергии приводит к ее нагреву, температура в точке приложения луча составляет от 2000 до 60 000 °С. Такая температура достаточна для расплавления и превращения в пар любого материала. Температура тем больше, чем большей поглощающей и меньшей отражающей способностью обладает обрабатываемый материал, а также чем меньше его теплопроводность и теплоемкость.

Разновидности лазерной обработки — пробивка отверстий, контурная резка, упрочнение и легирование деталей машин и инструментов, сварка, резание с лазерным подогревом.

Электронно-лучевая обработка использует тепловую энергию, выделившуюся при столкновении быстродвижущихся электронов с обрабатываемым материалом. При столкновении ускоренного электронного потока с твердым телом 90 % кинетической энергии электронов переходит в тепловую энергию. Повышая скорость движения электронов и их кинетическую энергию, а также увеличивая число электронов, движущихся в данном объеме, можно создавать чрезвычайно высокую концентрацию тепловой энергии во времени и пространстве, приводящую к нагреву, плавлению, испарению и тепловому взрыву вещества.

При электронно-лучевой обработке на малом участке обрабатываемой поверхности достигается такая высокая плотность энергии, которая практически недостижима при других методах нагрева. При этом возникает эффект «кинжального» (глубинного) проплавления. Образуется узкий и глубокий канал, соотношение его глубины к ширине достигает 20 : 1. Поэтому возможно проплавление материалов большой толщины (до 200 мм) при узкой зоне термического воздействия.

Электронно-лучевая обработка проводится в вакууме, который является отличной защитной средой, препятствующей окислению расплавленного материала. Перемещением электронного луча можно легко управлять, его можно расфокусировать, можно «запереть», что позволяет выполнять обработку по сложной траектории и с пропусками. Электронный луч можно направить в узкую щель и произвести обработку в местах, не доступных для других способов обработки. Небольшие площади обработки и узкая зона прогрева позволяют обрабатывать миниатюрные детали, получать малые отверстия.

Для электронно-лучевой обработки используют различные устройства, основой которых является так называемая электронная пушка.

Особенности электронно-лучевой технологии используются при сварке (электронно-лучевая сварка) различных материалов: стекла, молибдена, тантала, ниобия, вольфрама, инконеля, бериллия и др.

Электронно-лучевое резание и прошивка применяются:

  • для изготовления тонких пазов, щелей и прорезей размерами от нескольких десятков микрометров в деталях малой толщины (пленки, фольги);

  • для сверления отверстий малых диаметров (100 мкм) в кварцевых пластинах, иглах и рубиновых камнях для часовых подшипников, фильерах для производства искусственных волокон и т. д.;

  • при разрезании полупроводников и ферритов для производства электронной аппаратуры.

Электронно-лучевая плавка позволяет производить расплавление любых тугоплавких металлов в вакууме без опасности окисления или загрязнения расплавляемого металла газами и другими примесями. Электроннолучевую плавку применяют для получения особо чистых тугоплавких материалов.

Воздействие на здоровье[править | править код]

Электромагнитное излучениеправить | править код

Это излучение создаётся не самим кинескопом, а отклоняющей системой. Трубки с электростатическим отклонением, в частности, осциллографические, его не излучают.

В мониторных кинескопах для подавления этого излучения отклоняющую систему часто закрывают ферритовыми чашками. Телевизионные кинескопы такой экранировки не требуют, поскольку зритель обычно сидит на значительно большем расстоянии от телевизора, чем от монитора.

Ионизирующее излучениеправить | править код

В кинескопах присутствует ионизирующее излучение двух видов.

Второе — тормозное рентгеновское излучение, которое возникает при бомбардировке экрана электронами. Для ослабления выхода этого излучения наружу до полностью безопасных величин стекло легируют свинцом (см. ниже). Однако, в случае неисправности телевизора или монитора, приводящей к значительному повышению анодного напряжения, уровень этого излучения может увеличиться до заметных величин. Для предотвращения таких ситуаций блоки строчной развёртки оборудуют узлами защиты.

В отечественных и зарубежных телевизорах цветного изображения, выпущенных до середины 1970-х годов, могут встречаться дополнительные источники рентгеновского излучения — стабилизирующие триоды, подключаемые параллельно кинескопу, и служащие для стабилизации анодного напряжения, а значит, и размеров изображения. В телевизорах «Радуга-5» и «Рубин-401-1» используются триоды 6С20С, в ранних моделях УЛПЦТ — ГП-5. Поскольку стекло баллона такого триода значительно тоньше, чем у кинескопа, и не легировано свинцом, он является значительно более интенсивным источником рентгеновского излучения, чем сам кинескоп, поэтому его помещают в специальный стальной экран. В более поздних моделях телевизоров УЛПЦТ используются иные методы стабилизации высокого напряжения, и этот источник рентгеновского излучения исключён.

Мерцаниеправить | править код

Монитор Mitsubishi Diamond Pro 750SB (1024×768, 100 Гц), снятый с выдержкой 1/1000 с. Яркость искусственно завышена; показана реальная яркость изображения в разных точках экрана.

Луч ЭЛТ-монитора, формируя изображение на экране, заставляет светиться частицы люминофора. До момента формирования следующего кадра эти частицы успевают погаснуть, поэтому можно наблюдать «мерцание экрана». Чем выше частота смены кадров, тем менее заметно мерцание. Низкая частота ведет к усталости глаз и наносит вред здоровью.

У большинства телевизоров на базе электронно-лучевой трубки ежесекундно сменяется 25 кадров, что с учётом чересстрочной развёртки составляет 50 полей (полукадров) в секунду (Гц). В современных моделях телевизоров эта частота искусственно завышается до 100 герц. При работе за экраном монитора мерцание чувствуется сильнее, так как при этом расстояние от глаз до кинескопа намного меньше, чем при просмотре телевизора. Минимальной рекомендуемой частотой обновления экрана монитора является частота 85 герц. Ранние модели мониторов не позволяют работать с частотой развёртки более 70—75 Гц. Мерцание ЭЛТ явно можно наблюдать боковым зрением.

Нечёткое изображениеправить | править код

Изображение на электронно-лучевой трубке является размытым по сравнению с другими видами экранов. Считается, что размытое изображение — один из факторов, способствующих усталости глаз у пользователя.

Высокое напряжениеправить | править код

В работе ЭЛТ применяется высокое напряжение. Остаточное напряжение в сотни вольт, если не принимать никаких мер, может задерживаться на ЭЛТ и схемах «обвязки» неделями. Поэтому в схемы добавляют разряжающие резисторы, которые делают телевизор вполне безопасным уже через несколько минут после выключения.

Вопреки распространённому мнению, напряжением анода ЭЛТ нельзя убить человека из-за небольшой мощности преобразователя напряжения — будет лишь ощутимый удар. Однако, и он может оказаться смертельным при наличии у человека пороков сердца. Он может также приводить к травмам, включая, летальные, косвенным образом, когда, отдёрнув руку, человек касается других цепей телевизора и монитора, содержащих чрезвычайно опасные для жизни напряжения — а такие цепи присутствуют во всех моделях телевизоров и мониторов, использующих ЭЛТ, а также включая чисто механические травмы, сопряженные со внезапным бесконтрольным падением, вызванным электрической судорогой.

править | править код

Малогабаритные ЭЛТ и кинескопы с диаметром или диагональю экрана до 15 см опасности не представляют и взрывозащитными приспособлениями не оснащаются.

Обозначение и маркировка[править | править код]

Обозначение отечественных ЭЛТ состоит из четырёх элементов:

  • Первый элемент: число, указывающее диагональ прямоугольного либо диаметр круглого экрана в сантиметрах;
  • Второй элемент: предназначение ЭЛТ, в частности, ЛК — кинескоп телевизионный, ЛМ — кинескоп мониторный, ЛО — трубка осциллографическая;
  • Третий элемент: число, указывающие номер модели данной трубки с данной диагональю;
  • Четвёртый элемент: буква, указывающая цвет свечения экрана, в частности, Ц — цветной, Б — белого свечения, И — зелёного свечения.

В особых случаях к обозначению может добавляться пятый элемент, несущий дополнительную информацию.

Пример: 50ЛК2Б — чёрно-белый кинескоп с диагональю экрана 50 см, вторая модель, 3ЛО1И — осциллографическая трубка с диаметром экрана зелёного свечения 3 см, первая модель.

Источники питания ЭЛП

Источники питания ЭЛП состоят из источника ускоряющего напряжения, а также источников питания УЭ, К, ЮК, ФК, ОК.

Источники ускоряющего напряжения выполняются с регулирующим элементом на первичной или вторичной стороне высоковольтного трансформатора, с преобразованием или без преобразования частоты питающего напряжения (рис. 5.11).

Рис. 5.11. Функциональные схемы источников ускоряющего напряжения:а — с тиристорным регулятором (ТР); б — с регулирующим элементом (РЭ) на вторичной стороне трансформатора; ВТ — высоковольтный трансформатор; ВВ — высоковольтный выпрямитель; Ф — фильтр; ВД — высоковольтный делитель

Регулировку на первичной стороне осуществляют тиристорными или транзисторными регуляторами, на вторичной стороне — специальной высоковольтной лампой. Для защиты от пробоев в ЭЛП источники ускоряющего напряжения обычно снабжаются устройствами автоматического повторного включения. Это позволяет без заметного ухудшения качества сварки проводить ЭЛС даже в условиях частых пробоев. Конструктивно источники ускоряющего напряжения размещают в баке с трансформаторным маслом, которое одновременно выполняет функции охлаждающей среды. Известны также источники ускоряющего напряжения на напряжение до 60 кВ, в которых в качестве изолирующей среды используется воздух или компаунды.

Для гальванического разделения в источнике питания управляющего электрода используют высокочастотные трансформаторы или пару светодиод/фототранзистор, соединенную световодом. Для обеспечения постоянства характеристик системы проведения электронного луча питание катушек ЮК, ФК, ОК (см. рис. 5.10) осуществляется от регуляторов тока.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации