Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Десятиугольник

Правильный десятиугольник

У правильного десятиугольника все стороны равной длины, и каждый внутренний угол составляет 144°.

Площадь правильного десятиугольника равна (t — длина стороны):

A=52t2 ctgπ10=5t225+25≈7.694t2.{\displaystyle A={\frac {5}{2}}t^{2}\ ctg{\frac {\pi }{10}}={\frac {5t^{2}}{2}}{\sqrt {5+2{\sqrt {5}}}}\approx 7.694t^{2}.}

Альтернативная формула A=2.5dt{\displaystyle A=2.5dt}, где d — расстояние между параллельными сторонами или диаметр вписанной окружности. В тригонометрических функциях он выражается так:

d=2t(cos⁡3π10+cos⁡π10),{\displaystyle d=2t\left(\cos {\tfrac {3\pi }{10}}+\cos {\tfrac {\pi }{10}}\right),}

и может быть представлен в радикалах как

d=t5+25.{\displaystyle d=t{\sqrt {5+2{\sqrt {5}}}}.}

Сторона правильного десятиугольника, вписанного в единичную окружность, равна 5−12=1φ{\displaystyle {\tfrac {{\sqrt {5}}-1}{2}}={\tfrac {1}{\varphi }}}, где φ{\displaystyle \varphi } — золотое сечение.

Радиус описанной окружности десятиугольника равен

R=5+12t,{\displaystyle R={\frac {{\sqrt {5}}+1}{2}}t,}

а радиус вписанной окружности

r=5+252t.{\displaystyle r={\frac {\sqrt {5+2{\sqrt {5}}}}{2}}t.}

Построение

По теореме Гаусса — Ванцеля правильный десятиугольник возможно построить, используя лишь циркуль и линейку.


Построение правильного десятиугольника

Иначе его можно построить следующим образом:

  1. Построить сначала правильный пятиугольник.
  2. Соединить все его вершины с центром описанной окружности прямыми до пересечения с этой же окружностью на противоположной стороне. В этих точках пересечения и находятся остальные пять вершин десятиугольника.
  3. Соединить по порядку вершины пятиугольника и пять точек, найденные шагом ранее. Искомый десятиугольник построен.

История

Построение циркулем и линейкой правильного многоугольника с n{\displaystyle n} сторонами оставалось проблемой для математиков вплоть до XIX века. Такое построение идентично разделению окружности на n{\displaystyle n} равных частей, так как, соединив между собой точки, делящие окружность на части, можно получить искомый многоугольник.

Евклид в своих «Началах» занимался построением правильных многоугольников в книге IV, решая задачу для n=3,4,5,6,15{\displaystyle n=3,4,5,6,15}. Кроме этого, он уже определил первый критерий построимости многоугольников: хотя этот критерий и не был озвучен в «Началах», древнегреческие математики умели построить многоугольник с 2m{\displaystyle 2^{m}} сторонами (при целом m>1{\displaystyle m>1}), имея уже построенный многоугольник с числом сторон 2m−1{\displaystyle 2^{m-1}}: пользуясь умением разбиения дуги на две части, из двух полуокружностей мы строим квадрат, потом правильный восьмиугольник, правильный шестнадцатиугольник и так далее. Кроме этого, в той же книге Евклид указывает и второй критерий построимости: если известно, как строить многоугольники с r{\displaystyle r} и s{\displaystyle s} сторонами, и r{\displaystyle r} и s{\displaystyle s} взаимно простые, то можно построить и многоугольник с r⋅s{\displaystyle r\cdot s} сторонами. Это достигается построением многоугольника с s{\displaystyle s} сторонами и многоугольника с r{\displaystyle r} сторонами так, чтобы они были вписаны в одну окружность и чтобы одна вершина у них была общей — в таком случае некоторые две вершины этих многоугольников будут являться соседними вершинами rs{\displaystyle rs}-угольника. Синтезируя эти два способа, можно прийти к выводу, что древние математики умели строить правильные многоугольники с 2m⋅3{\displaystyle 2^{m}\cdot 3}, 2m⋅5{\displaystyle 2^{m}\cdot 5} и 2m⋅3⋅5{\displaystyle 2^{m}\cdot 3\cdot 5} сторонами при любом целом неотрицательном m{\displaystyle m}.

Средневековая математика почти никак не продвинулась в этом вопросе. Лишь в 1796 году Карлу Фридриху Гауссу удалось доказать, что если число сторон правильного многоугольника равно простому числу Ферма, то его можно построить при помощи циркуля и линейки. На сегодняшний день известны следующие простые числа Ферма: 3,5,17,257,65537{\displaystyle 3,5,17,257,65537}. Вопрос о наличии или отсутствии других таких чисел остаётся открытым. Гаусс, в частности, первым смог доказать возможность построения правильного 17{\displaystyle 17}-угольника, а под конец жизни завещал выбить его на своём надгробии, однако скульптор отказался выполнять столь сложную работу.

Из результата Гаусса мгновенно следовало, что правильный многоугольник возможно построить, если число его сторон равно 2kp1p2⋯ps{\displaystyle 2^{k}{p_{1}}{p_{2}}\cdots {p_{s}}}, где k{\displaystyle {k}} — целое неотрицательное число, а pj{\displaystyle {p_{j}}} — попарно различные простые числа Ферма. Гаусс подозревал, что это условие является не только достаточным, но и необходимым, но впервые это было доказано Пьером-Лораном Ванцелем в 1836 году. Итоговая теорема, совмещающая оба результата, называется Теоремой Гаусса-Ванцеля.

Последними результатами в области построения правильных многоугольников являются явные построения 17-, 257- и 65537-угольника. Первое было найдено Йоханнесом Эрхингером в 1825 году, второе — Фридрихом Юлиусом Ришело в 1832 году, а последнее — Иоганном Густавом Гермесом в 1894 году.

Свойства правильного восьмиугольника:

1. Все стороны правильного восьмиугольника равны между собой.

a1 = a2 = a3 = a4= a5 = a6 = a7 = a8.

2. Все углы равны между собой и составляют 135°.

α1 = α2 = α3 = α4 = α5 = α6 = α7 = α8 = 135°.

Рис. 4. Правильный восьмиугольник

3. Сумма внутренних углов любого правильного восьмиугольника равна 1035°.

4. Все биссектрисы углов между сторонами равны и проходят через центр правильного восьмиугольника O.

Рис. 5. Правильный восьмиугольник

5. Количество диагоналей правильного восьмиугольника равно 20.

Рис. 6. Правильный восьмиугольник

6. Центр вписанной окружности O1 совпадает с центром описанной окружности O2, что и образуют центр многоугольника O.

Рис. 7. Правильный восьмиугольник

Применение восьмиугольников

Дорожный знак «Движение без остановки запрещено»

Восьмиугольный план Купола Скалы

В странах, принявших Венскую конвенцию о дорожных знаках и сигналах (в том числе в России), а также во многих других странах, знак «Движение без остановки запрещено» имеет вид красного восьмиугольника.

Восьмиугольные формы часто используются в архитектуре. Купол Скалы имеет восьмиугольный план. Башня Ветров в Афинах — ещё один пример восьмиугольной структуры. Восьмиугольный план встречается также в архитектуре церквей, таких как Собор Святого Георгия (Аддис-Абеба), Сан-Витале (в городе Равенна, Италия), Замок Кастель-дель-Монте (Апулия, Италия), Флорентийский баптистерий и . Центральное пространство в Ахенский собор, Капелла Карла Великого имеют планы в виде правильного восьмиугольника.

Правильный десятиугольник

У правильного десятиугольника все стороны равной длины, и каждый внутренний угол составляет 144°.

Площадь правильного десятиугольника равна (t — длина стороны):

A=52t2 ctgπ10=5t225+25≈7.694t2.{\displaystyle A={\frac {5}{2}}t^{2}\ ctg{\frac {\pi }{10}}={\frac {5t^{2}}{2}}{\sqrt {5+2{\sqrt {5}}}}\approx 7.694t^{2}.}

Альтернативная формула A=2.5dt{\displaystyle A=2.5dt}, где d — расстояние между параллельными сторонами или диаметр вписанной окружности. В тригонометрических функциях он выражается так:

d=2t(cos⁡3π10+cos⁡π10),{\displaystyle d=2t\left(\cos {\tfrac {3\pi }{10}}+\cos {\tfrac {\pi }{10}}\right),}

и может быть представлен в радикалах как

d=t5+25.{\displaystyle d=t{\sqrt {5+2{\sqrt {5}}}}.}

Сторона правильного десятиугольника, вписанного в единичную окружность, равна 5−12=1φ{\displaystyle {\tfrac {{\sqrt {5}}-1}{2}}={\tfrac {1}{\varphi }}}, где φ{\displaystyle \varphi } — золотое сечение.

Радиус описанной окружности десятиугольника равен

R=5+12t,{\displaystyle R={\frac {{\sqrt {5}}+1}{2}}t,}

а радиус вписанной окружности

r=5+252t.{\displaystyle r={\frac {\sqrt {5+2{\sqrt {5}}}}{2}}t.}

Построение

По теореме Гаусса — Ванцеля правильный десятиугольник возможно построить, используя лишь циркуль и линейку.


Построение правильного десятиугольника

Иначе его можно построить следующим образом:

  1. Построить сначала правильный пятиугольник.
  2. Соединить все его вершины с центром описанной окружности прямыми до пересечения с этой же окружностью на противоположной стороне. В этих точках пересечения и находятся остальные пять вершин десятиугольника.
  3. Соединить по порядку вершины пятиугольника и пять точек, найденные шагом ранее. Искомый десятиугольник построен.

Восьмиугольник, выпуклый и невыпуклый восьмиугольник:

Восьмиугольник – это многоугольник с восемью углами.

Восьмиугольник – это многоугольник, общее количество углов (вершин) которого равно восьми.

Восьмиугольник может быть выпуклым и невыпуклым.

Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Невыпуклыми являются все остальные многоугольники.

Соответственно выпуклый восьмиугольник – это восьмиугольник, у которого все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.

Рис. 1. Выпуклый восьмиугольник

Рис. 2. Невыпуклый восьмиугольник

Сумма внутренних углов любого выпуклого восьмиугольника равна 1080°.

Площадь через квадрат

Площадь правильного восьмиугольника можно вычислить как площадь усечённого квадрата.

Площадь можно также вычислить как усечение квадрата

S=A2−a2,{\displaystyle S=A^{2}-a^{2},}

где A — ширина восьмиугольника (вторая меньшая диагональ), а a — длина его стороны. Это легко показать, если провести через противоположные стороны прямые, что даст квадрат. Легко показать, что угловые треугольники равнобедренные с основанием, равным a. Если их сложить (как на рисунке), получится квадрат со стороной a.

Если задана сторона a, то длина A равна

A=a2+a+a2=(1+2)a≈2.414a.{\displaystyle A={\frac {a}{\sqrt {2}}}+a+{\frac {a}{\sqrt {2}}}=(1+{\sqrt {2}})a\approx 2.414a.}

Тогда площадь равна:

S=((1+2)a)2−a2=2(1+2)a2≈4.828a2.{\displaystyle S=((1+{\sqrt {2}})a)^{2}-a^{2}=2(1+{\sqrt {2}})a^{2}\approx 4.828a^{2}.}

Площадь через A (ширину восьмиугольника)

S=2(2−1)A2≈0.828A2.{\displaystyle S=2({\sqrt {2}}-1)A^{2}\approx 0.828A^{2}.}

Ещё одна простая формула площади:

 S=2aA.{\displaystyle \ S=2aA.}

Часто значение A известно, в то время как величину стороны a следует найти, как, например, при отрезании от квадратного куска материала углов с целью получения правильного восьмиугольника. Из формул выше имеем

a≈A2.414.{\displaystyle a\approx A/2.414.}

Два катета углового треугольника можно получить по формуле

e=(A−a)2.{\displaystyle e=(A-a)/2.}

Правильный восьмиугольник в природе, технике и культуре:

В странах, принявших Венскую конвенцию о дорожных знаках и сигналах (в том числе в России), а также во многих других странах, знак «Движение без остановки запрещено» имеет вид красного правильного восьмиугольника.

Форма правильного восьмиугольника часто используются в изобразительном искусстве, архитектуре. Например, Собор Святого Георгия (Аддис-Абеба, Эфиопия), Купол Скалы (Иерусалим, Израиль), башня Ветров (Афины, Греция), Сан-Витале (в городе Равенна, Италия), Замок Кастель-дель-Монте (Апулия, Италия), Флорентийский баптистерий (Флоренция, Италия), Ахенский собор (Ахен, Германия), Капелла Карла Великого (Ахен, Германия).

Примечание:  Фото https://www.pexels.com, https://pixabay.com

Как возможно научиться писать тексты и зарабатывать на этом удаленно? Например, можете пройти курс «Копирайтинг от А до Я», который подойдет даже начинающим авторам.

Другие записи:

карта сайта

Коэффициент востребованности
908

Применение восьмиугольников

Дорожный знак «Движение без остановки запрещено»

Восьмиугольный план Купола Скалы

В странах, принявших Венскую конвенцию о дорожных знаках и сигналах (в том числе в России), а также во многих других странах, знак «Движение без остановки запрещено» имеет вид красного восьмиугольника.

Восьмиугольные формы часто используются в архитектуре. Купол Скалы имеет восьмиугольный план. Башня Ветров в Афинах — ещё один пример восьмиугольной структуры. Восьмиугольный план встречается также в архитектуре церквей, таких как Собор Святого Георгия (Аддис-Абеба), Сан-Витале (в городе Равенна, Италия), Замок Кастель-дель-Монте (Апулия, Италия), Флорентийский баптистерий и . Центральное пространство в Ахенский собор, Капелла Карла Великого имеют планы в виде правильного восьмиугольника.

Геометрические свойстваУглы

С каждым правильным многогранником связаны определённые углы, характеризующие его свойства. Двугранный угол между смежными гранями правильного многогранника {p, q} задаётся формулой:

Иногда удобнее пользоваться выражением через тангенс:

где принимает значения 4, 6, 6, 10 и 10 для тетраэдра, куба, октаэдра, додекаэдра и икосаэдра соответственно.

Угловой дефект при вершине многогранника – это разность между 2π и суммой углов между рёбрами каждой грани при этой вершине. Дефект при любой вершине правильного многогранника:

По теореме Декарта, он равен делённым на число вершин (т.е. суммарный дефект при всех вершинах равен ).

Трёхмерным аналогом плоского угла является телесный угол. Телесный угол Ω при вершине правильного многогранника выражается через двугранный угол между смежными гранями этого многогранника по формуле:

Телесный угол, стягиваемый гранью правильного многогранника, с вершиной в центре этого многогранника, равен телесному углу полной сферы ( стерадиан), делённому на число граней. Он также равен угловому дефекту дуального к данному многогранника.

Различные углы правильных многогранников приведены в следующей таблице. Числовые значения телесных углов даны в стерадианах. Константа – золотое сечение.

МногогранникДвугранный уголθПлоский угол между рёбрами при вершинеУгловой дефект (δ)Телесный угол при вершине (Ω)Телесный угол, стягиваемый гранью
тетраэдр70.53°60°ππ
куб90°190°
октаэдр109.47°√260°, 90°
додекаэдр116.57°108°
икосаэдр138.19°60°, 108°

Радиусы, площади и объёмы

С каждым правильным многогранником связаны три концентрические сферы:

  • Описанная сфера, проходящая через вершины многогранника;
  • Срединная сфера, касающаяся каждого его ребра в середине;
  • Вписанная сфера, касающаяся каждой его грани в её центре.

Радиусы описанной () и вписанной () сфер задаются формулами:

где θ — двугранный угол между смежными гранями многогранника. Радиус срединной сферы задаётся формулой:

где h — величина описанная выше, при определении двугранных углов (h = 4, 6, 6, 10 или 10). Отношения описанных радиусов к вписанным радиусам симметрично относительно p и q:

Площадь поверхности S правильного многогранника {p, q} вычисляется, как площадь правильного p-угольника, умноженная на число граней Г:

Объём правильного многогранника вычисляется, как умноженный на число граней объём , основанием которой служит правильный p-угольник, а высотой — радиус вписанной сферы r:

Приведённая таблица содержит список различных радиусов, площадей поверхностей и объёмов правильных многогранников. Значение длины ребра a в таблице приравнены к 2.

Многогранник(a = 2)Радиус вписанной сферы (r)Радиус срединной сферы (ρ)Радиус описанной сферы (R)Площадь поверхности (S)Объём (V)
тетраэдр
куб
октаэдр
додекаэдр
икосаэдр

Константы φ и ξ задаются выражениями

Среди правильных многогранников как додекаэдр, так и икосаэдр представляют собой лучшее приближение к сфере. Икосаэдр имеет наибольшее число граней, наибольший двугранный угол и плотнее всего прижимается к своей вписанной сфере. С другой стороны, додекаэдр имеет наименьший угловой дефект, наибольший телесный угол при вершине и максимально заполняет свою описанную сферу.

Свойства правильного шестиугольника:

1. Все стороны правильного шестиугольника равны между собой.

a1 = a2 = a3 = a4= a5= a6.

2. Все углы равны между собой и составляют 120°.

α1 = α2 = α3 = α4 = α5 = α6 = 120°.

Рис. 4. Правильный шестиугольник

3. Сумма внутренних углов любого правильного шестиугольника равна 720°.

4. Все биссектрисы углов между сторонами равны и проходят через центр правильного шестиугольника O.

Рис. 5. Правильный шестиугольник

5. Количество диагоналей правильного шестиугольника равно 9.

Рис. 6. Правильный шестиугольник

6. Центр вписанной окружности O1 совпадает с центром описанной окружности O2, что и образуют центр многоугольника O.

Рис. 7. Правильный шестиугольник

7. Правильные шестиугольники замощают плоскость (то есть могут заполнять плоскость без пробелов и наложений).

8. Радиус описанной окружности правильного шестиугольника и его сторона равны.

Рис. 8. Правильный шестиугольник

R = a

Пространственный десятиугольник

Правильные пространственные десятиугольники
{5}#{ }{5/2}#{ }{5/3}#{ }

Пентаграммная антипризма

Пентаграммная антипризма с перекрёстом

Пространственный десятиугольник — это пространственный многоугольник с десятью рёбрами и вершинами, но не лежащими в одной плоскости. У пространственного зиг-заг десятиугольника вершины чередуются между двумя параллельными плоскостями.

У правильного пространственного десятиугольника все рёбра равны. В трёхмерном пространстве это зиг-заг пространственный декагон, он может быть обнаружен среди рёбер и вершин пентагональной антипризмы, пентаграммной антипризмы, пентаграммной перекрещивающейся антипризмы с той же D5d симметрией порядка 20.

Его также можно найти в некоторых выпуклых многогранниках с икосаэдрической симметрией. Многоугольники по периметру этих проекций (см. ниже) это пространственные десятиугольники.

Ортогональные проекции многогранников
ДодекаэдрИкосаэдрИкосододекаэдрРомботриаконтаэдр

Многоугольники Петри

Правильный пространственный десятиугольник — это многоугольник Петри для многих многогранников высших размерностей, как показано на этих ортогональных проекциях на различных плоскостях Коксетера.

A9D6B5
9-симплекс4111315-ортоплекс5-куб

Видео

Посмотрите, как можно быстро начертить пятиугольник.

Толковый словарь Ожегова гласит, что пятиугольник представляет собой ограниченную пятью пересекающимися прямыми, образующими пять внутренних углов, а также любой предмет подобной формы. Если у данного многоугольника все стороны и углы одинаковые, то он называется правильным (пентагоном).

Чем интересен правильный пятиугольник?

Именно в такой форме было построено всем известное здание Минобороны Соединенных Штатов. Из объемных правильных многогранников лишь додекаэдр имеет грани в форме пентагона. А в природе напрочь отсутствуют кристаллы, грани которых напоминали бы собой правильный пятиугольник. Кроме того, эта фигура является многоугольником с минимальным количеством углов, которым невозможно замостить площадь. Только у пятиугольника количество диагоналей совпадает с количеством его сторон. Согласитесь, это интересно!

Основные свойства и формулы

Воспользовавшись формулами для произвольного правильного многоугольника, можно определить все необходимые параметры, которые имеет пентагон.

  • Центральный угол α = 360 / n = 360/5 =72°.
  • Внутренний угол β = 180° * (n-2)/n = 180° * 3/5 = 108°. Соответственно, сумма внутренних углов составляет 540°.
  • Отношение диагонали к боковой стороне равно (1+√5) /2, то есть (примерно 1,618).
  • Длина стороны, которую имеет правильный пятиугольник, может быть рассчитана по одной из трех формул, в зависимости от того, какой параметр уже известен:
  • если вокруг него описана окружность и известен ее радиус R, то а = 2*R*sin (α/2) = 2*R*sin(72°/2) ≈1,1756*R;
  • в случае, когда окружность c радиусом r вписана в правильный пятиугольник, а = 2*r*tg(α/2) = 2*r*tg(α/2) ≈ 1,453*r;
  • бывает так, что вместо радиусов известна величина диагонали D, тогда сторону определяют следующим образом: а ≈ D/1,618.
  • Площадь правильного пятиугольника определяется, опять-таки, в зависимости от того, какой параметр нам известен:
  • если имеется вписанная или описанная окружность, то используется одна из двух формул:

S = (n*a*r)/2 = 2,5*a*r либо S = (n*R 2 *sin α)/2 ≈ 2,3776*R 2 ;

площадь можно также определить, зная лишь длину боковой стороны а:

S = (5*a 2 *tg54°)/4 ≈ 1,7205* a 2 .

Правильный пятиугольник: построение

Данную геометрическую фигуру можно построить по-разному. Например, вписать его в окружность с заданным радиусом либо построить на базе заданной боковой стороны. Последовательность действий была описана еще в «Началах» Евклида примерно 300 лет до н.э. В любом случае, нам понадобятся циркуль и линейка. Рассмотрим способ построения с помощью заданной окружности.

1. Выберите произвольный радиус и начертите окружность, обозначив ее центр точкой O.

2. На линии окружности выберите точку, которая будет служить одной из вершин нашего пятиугольника. Пусть это будет точка А. Соедините точки О и А прямым отрезком.

3. Проведите прямую через точку О перпендикулярно к прямой ОА. Место пересечения этой прямой с линией окружности обозначьте, как точку В.

4. На середине расстояния между точками О и В постройте точку С.

5. Теперь начертите окружность, центр которой будет в точке С и которая будет проходить через точку А. Место ее пересечения с прямой OB (оно окажется внутри самой первой окружности) будет точкой D.

6. Постройте окружность, проходящую через D, центр которой будет в А. Места ее пересечения с первоначальной окружностью нужно обозначить точками Е и F.

7. Теперь постройте окружность, центр которой будет в Е. Сделать это надо так, чтобы она проходила через А. Ее другое место пересечения оригинальной окружности нужно обозначить

8. Наконец, постройте окружность через А с центром в точке F. Обозначьте другое место пересечения оригинальной окружности точкой H.

9. Теперь осталось только соединить вершины A, E, G, H, F. Наш правильный пятиугольник будет готов!

Симметрия

11 симметрий правильного восьмиугольника. Линии зеркальных отражений показаны цветом — синие линии проходят через вершины, фиолетовые проходят через середины рёбер, число поворотов указано в центре. Вершины раскрашены согласно симметрии.

Правильный восьмиугольник имеет группу симметрии Dih8 порядка 16. Имеется 3 диэдральные подгруппы — Dih4, Dih2 и Dih1, а также 4 циклические подгруппы — Z8, Z4, Z2 и Z1. Последняя подгруппа подразумевает отсутствие симметрии.

Правильный восьмиугольник имеет 11 различных симметрий. Джон Конвей обозначил полную симметрию как r16 . Диэдральные симметрии делятся на симметрии, проходящие через вершины (обозначены как d — от diagonal), или через рёбра (обозначены как p — от perpendiculars). Циклические симметрии в среднем столбце обозначены буквой g и для них указан порядок группы вращения. Полная симметрия правильного восьмиугольника обозначена как r16 а отсутствие — как a1.

Примеры восьмиугольников по их симметриям
r16
d8g8p8
d4g4p4
d2g2p2
a1

На рисунке слева показаны типы симметрий восьмиугольников. Наиболее общие симметрии восьмиугольников — p8, восьмиугольник, построенный четырьмя зеркалами и имеющий перемежающиеся длинные короткие стороны, и d8, изотоксальный восьмиугольник, имеющий рёбра равной длины, но вершины имеют два разных внутренних угла. Эти две формы являются друг другу и имеют порядок, равный половине симметрии правильного восьмиугольника.

Каждая подгруппа симметрии даёт одну или более степеней свободы для неправильных форм. Только подгруппа g8 не имеет степеней свободы, но может рассматриваться как имеющая ориентированные рёбра.

Применение восьмиугольников[править | править код]

Дорожный знак «Движение без остановки запрещено»

Восьмиугольный план Купола Скалы

В странах, принявших Венскую конвенцию о дорожных знаках и сигналах (в том числе в России), а также во многих других странах, знак «Движение без остановки запрещено» имеет вид красного восьмиугольника.

Восьмиугольные формы часто используются в архитектуре. Купол Скалы имеет восьмиугольный план. Башня Ветров в Афинах — ещё один пример восьмиугольной структуры. Восьмиугольный план встречается также в архитектуре церквей, таких как Собор Святого Георгия (Аддис-Абеба), Сан-Витале (в городе Равенна, Италия), Замок Кастель-дель-Монте (Апулия, Италия), Флорентийский баптистерий и . Центральное пространство в Ахенский собор, Капелла Карла Великого имеют планы в виде правильного восьмиугольника.

Формулы расчёта параметров правильного восьмиугольника

Пример:

  • t — длина стороны восьмиугольника
  • r — радиус вписанной окружности
  • R — радиус описанной окружности
  • S — площадь восьмиугольника
  • k — константа, равная (1+2){\displaystyle (1+{\sqrt {2}})} ≈ 2,414213562373095

Так как правильный восьмиугольник можно получить соответствующим отсечением углов квадрата со стороной kt{\displaystyle kt}, радиус вписанной окружности, радиус описанной окружности и площадь правильного восьмиугольника можно вычислить и без использования тригонометрических функций:

Радиус вписанной окружности правильного восьмиугольника:

r=k2t{\displaystyle r={\frac {k}{2}}t}

Радиус описанной окружности правильного восьмиугольника:

R=tkk−1{\displaystyle R=t{\sqrt {\frac {k}{k-1}}}}

Площадь правильного восьмиугольника:

Через сторону восьмиугольника

S=2kt2=2(1+2)t2≃4.828t2.{\displaystyle S=2kt^{2}=2(1+{\sqrt {2}})t^{2}\simeq 4.828\,t^{2}.}

Через радиус описанной окружности

S=4sin⁡π4R2=22R2≃2.828R2.{\displaystyle S=4\sin {\frac {\pi }{4}}R^{2}=2{\sqrt {2}}R^{2}\simeq 2.828\,R^{2}.}

Через апофему (высоту)

A=8tan⁡π8r2=8(2−1)r2≃3.314r2.{\displaystyle A=8\tan {\frac {\pi }{8}}r^{2}=8({\sqrt {2}}-1)r^{2}\simeq 3.314\,r^{2}.}

Правильный пятиугольник в природе, технике и культуре:

Пентасимметрию можно наблюдать в некоторых фруктах (например, у мушмулы германской), у иглокожих (например, у морских звёзд) и у некоторых растений.

Исследования формирования водяного льда на ровной поверхности меди при температурах 100-140 K показали, что сначала на поверхности возникают цепочки молекул шириной около 1 нм не гексагональной, а пентагональной структуры.

Пентагон — здание Министерства обороны США — имеет форму правильного пятиугольника.

Паркет, тротуарная плитка, мозайки и т.п. может выкладываться элементами, которые имеют вид пятиугольников.

Государственный знак качества СССР имеет форму пятиугольника с выпуклыми сторонами.

Примечание:  Фото https://www.pexels.com, https://pixabay.com

Как возможно научиться писать тексты и зарабатывать на этом удаленно? Например, можете пройти курс «Копирайтинг от А до Я», который подойдет даже начинающим авторам.

Другие записи:

карта сайта

Коэффициент востребованности
586

Симметрия

Симметрии правильного пятнадцатиугольника показаны цветом на рёбрах и вершинах. Прямые отражений показаны синим цветом. Вращения задаются числами в центре. Вершина выкрашены согласно симметрии.

Правильный пятнадцатиугольник имеет диэдральную симметрию порядка 30 (Dih15), представленную 15 прямыми зеркального отражения. Dih15 имеет 3 диэдральные подгруппы: Dih5, Dih3 и Dih1. А кроме того, ещё четыре циклические симметрии — Z15, Z5, Z3 и Z1, где Zn представляет π/n вращательную симметрию.

В пятнадцатиугольнике имеется 8 различных симметрий. Джон Конвей обозначил симметрии буквами с указанием порядка симметрии после буквы. Он обозначил через r30 полную симметрию отражений Dih15, обозначил через d (diagonal = диагональ) отражения относительно прямых, проходящих через вершины, через p отражения относительно прямых, проходящих через середины рёбер (perpendicular = перпендикуляр), а для пятнадцатиугольника с нечётным числом вершин использовал букву i (для зеркал через вершину и середину ребра) и букву g для циклической симметрии. Символ a1 означает отсутствие симметрии.

Эти низкие степени симметрий определяют степени свободы в определении неправильных пятнадцатиугольников. Только подгруппа g15 не имеет степеней свободы, но может рассматриваться как обладающая ориентированными рёбрами.

Пентадекаграммы

Существует три правильных звезды: {15/2}, {15/4}, {15/7} на тех же самых 15 вершинах правильного пятнадцатиугольника, но соединённых через одну, через три или через шесть вершин.

Есть также три правильных : {15/3}, {15/5}, {15/6}, первая состоит из трёх пятиугольников, вторая состоит из пяти правильных треугольников, а третья состоит из трёх пентаграмм.

Составную фигуру {15/3} можно рассматривать как двухмерный эквивалент трёхмерного соединения пяти тетраэдров.

Picture

{15/2}

{15/3} or 3{5}

{15/4}

{15/5} or 5{3}

{15/6} or 3{5/2}

{15/7}

132°108°84°60°36°12°

Более глубокие усечения правильного пятнадцатиугольника и пентадекаграмм могут дать изогональные (вершинно транзитивные) промежуточные звёздчатые многоугольники, образованные вершинами, находящимися на одинаковом расстоянии, и двумя длинами рёбер.

Вершинно транзитивные функции на пятнадцатиугольнике
КвазирегулярныеРавноугольныеКвазирегулярные

t{15/2}={30/2}

t{15/13}={30/13}

t{15/7} = {30/7}

t{15/8}={30/8}

t{15/11}={30/22}

t{15/4}={30/4}

Многоугольники Петри

Правильный пятнадцатиугольник является многоугольником Петри для некоторого многогранника высокой размерности, полученного ортогональной проекцией:

14-симплекс (14D)

Он также является многоугольником Петри для и .

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации