Андрей Смирнов
Время чтения: ~15 мин.
Просмотров: 0

Цветные металлы — свойства, группы, применение

Применение металлов

Конструкционные материалы

Металлы и их сплавы — одни из главных конструкционных материалов современной цивилизации. Это определяется, прежде всего, их высокой прочностью, однородностью и непроницаемостью для жидкостей и газов. Кроме того, меняя рецептуру сплавов, можно менять их свойства в очень широких пределах.

Электротехнические материалы

Металлы используются в качестве хороших проводников электричества (медь, алюминий), так и в качестве материалов с повышенным сопротивлением для резисторов и электронагревательных элементов (нихром и т. п.).

Инструментальные материалы

Металлы и их сплавы широко применяются для изготовления инструментов (их рабочей части). В основном, это инструментальные стали и твёрдые сплавы. В качестве инструментальных материалов применяются также алмаз, нитрид бора, керамика.

Характеристика и особенности

Медь выглядит золотисто-розовым металлом, который при взаимодействии с воздухом приобретает оксидный налёт желтовато-красного оттенка. Так же, как золото, цезий и осмий, характеризуется индивидуальной цветовой окраской. Существуют ещё некоторые особенности металла:

Обладает высокой степенью электропроводности (после серебра на втором месте), особенно при использовании её в чистом виде

Примесь других металлов или каких-либо веществ в составе снижает её проводимость.
Металл прочен и долговечен, поэтому широко применяется в производстве труб, кровельных материалов.
Привлекательный цвет и блеск меди дали возможность использовать её для изготовления посуды, различных декоративных изделий, предметов и украшений интерьера.
Важной особенностью меди является процесс окисления. При взаимодействии с влажной средой металл приобретает уникальный налёт

Благодаря слою патины металл защищён от коррозионного процесса и различных повреждений. Это свойство меди часто используется художниками и скульпторами. Искусственно подвергая металл воздействию влаги, получают необычную окраску изделия. Примером может служить статуя Свободы в США. С годами на ней стала образовываться патина, и монумент приобрёл зелёный оттенок. Теперь американцы называют свой символ «Зелёная леди».
Отличается высокой энергоэффективностью. Хорошая теплопроводность металла позволяет значительно экономить энергию. Если система отопления снабжена медными трубами с изоляцией, потери тепла снижаются во много раз. И наоборот, в охладительных системах благодаря металлу поддерживается заданная температура.
Это незаменимый микроэлемент, участвующий во многих процессах работы организма человека: кроветворении, метаболизме сахара и холестерина, способствует усвоению железа, улучшает работу сердечно-сосудистой системы и головного мозга.

Титан и титановые сплавы

Титан и сплавы из него маркируются согласно существующим ГОСТ буквами и цифрами. Закономерностей при маркировке не существует. Однако ключевая особенность в этом случае — это обязательное присутствие буквы «Т». Числа обозначают условный номер титанового сплава.

Технический титан может маркироваться как ВТ1−0 или ВТ1−00. Все остальное означает титановые сплавы и имеет другие маркировки, которые обозначаются по-разному, и все их перечислить не удастся.

Ключевое преимущество титана и материалов на его основе — это отличное сочетание таких свойств, как:

  • относительно низкая плотность;
  • очень высокая устойчивость к коррозии;
  • высокая механическая прочность.

Но есть у них и недостатки — это дефицитность и дороговизна. По этой причине применение этого материала в холодильной и пищевой промышленности ограничено. Титановые сплавы преимущество применяются в таких отраслях:

  • судостроение;
  • ракетостроение;
  • авиационное строительство;
  • химическое машиностроение;
  • транспортное машиностроение.

Материалы могут применяться при высоких температурах до 500 градусов. Изделия на основе титановых материалов производятся методом обработки под давлением, а также посредством литья. По составу литейные сплавы соответствуют деформируемым, но при маркировке в конце указываются буквой «Л».

Применение металлов

Конструкционные материалы

Металлы и их сплавы — одни из главных конструкционных материалов современной цивилизации. Это определяется, прежде всего, их высокой прочностью, однородностью и непроницаемостью для жидкостей и газов. Кроме того, меняя рецептуру сплавов, можно менять их свойства в очень широких пределах.

Электротехнические материалы

Металлы используются как в качестве хороших проводников электричества (медь, алюминий), так и в качестве материалов с повышенным сопротивлением для резисторов и электронагревательных элементов (нихром и т. п.).

Инструментальные материалы

Металлы и их сплавы широко применяются для изготовления инструментов (их рабочей части). В основном, это инструментальные стали и твёрдые сплавы. В качестве инструментальных материалов применяются также алмаз, нитрид бора, керамика.

4.1 Сплавы на основе магния

Достоинством магниевых сплавов является высокая удельная прочность. Предел прочности магниевых сплавов достигает 250-400 МПа при плотности менее 2 грамм на кубический сантиметр. Сплавы в горячем состоянии хорошо куются, прокатываются и прессуются. Магниевые сплавы хорошо обрабатываются резанием (лучше, чем стали, алюминиевые и медные сплавы), хорошо шлифуются и полируются. Удовлетворительно свариваются контактной и дуговой сваркой в среде защитных газов.

К недостаткам магниевых сплавов наряду с низкой коррозионной стойкостью и малым модулем упругости следует отнести плохие литейные свойства, склонность к газонасыщению, окислению и воспламенению при их приготовлении.

По механическим свойствам магниевые сплавы подразделяют на сплавы невысокой и средней прочности, высокопрочные и жаропрочные, по склонности к упрочнению с помощью термической обработки – на упрочняемые и неупрочняемые.

Деформируемые магниевые сплавы. В сплавах МА1 и МА8 основным легирующим элементом является марганец. Термической обработкой эти сплавы не упрочняются, обладают хорошей коррозионной стойкостью и свариваемостью. Сплавы МА2-1 и МА5 относятся к системе Mg-Al-Zn-Mn. Алюминий и цинк повышают прочность сплавов, придают хорошую технологическую пластичность, что позволяет изготовлять из них кованные и штампованные детали сложной формы (крыльчатки и жалюзи капота самолета). Сплавы системы Mg-Zn, дополнительно легированные цирконием (МА14), кадмием, редкоземельными металлами (МА15, МА19 и др.) относят к высокопрочным магниевым сплавам. Их применяют для несвариваемых сильно нагруженных деталей (обшивки самолетов, деталей грузоподъемных машин, автомобилей, ткацких станков и др.).

Литейные магниевые сплавы. Наибольшее применение нашли сплавы системы Mg-Al-Zn (МЛ5, МЛ6). Они широко применяются в самолетостроении (корпуса приборов, насосов, коробок передач, фонари и двери кабин и т.д.), ракетной технике (корпуса ракет, обтекатели, топливные и кислородные баки, стабилизаторы), конструкциях автомобилей, особенно гоночных (корпуса, колеса, помпы и др.), в приборостроении (корпуса и детали приборов). Вследствие малой способности к поглощению тепловых нейтронов магниевые сплавы используют в атомной технике, а благодаря высокой демпфирующей способности – при производстве кожухов для электронной аппаратуры.

Более высокими технологическими и механическими свойствами обладают сплавы магния с цинком и цирконием (МЛ 12), а также сплавы, дополнительно легированные кадмием (МЛ8), редкоземельными металлами (МЛ9, МЛ10). Данные сплавы применяют для нагруженных деталей самолетов и авиадвигателей (корпусов компрессоров, картеров, ферм шасси, колонок управления и др.).

Магниевые сплавы подвергаются следующим видам термической обработки: Т1 – старение, Т2 – отжиг, Т4 – гомогенизация и закалка на воздухе, Т6 – гомогенизация, закалка на воздухе и старение, Т61 – гомогенизация, закалка в воду и старение.

Заключение

Цветные металлы и их сплавы нашли широкое применение в строительстве благодаря своей прочности, легкости, высокой антикоррозийной стойкости. Они подразделяются на легкие (в большинстве своем на основе алюминия) и тяжелые (на основе меди, латуни, олова и т.п.).

Цветная металлургия является одной из наиболее конкурентоспособных отраслей промышленности России, причем российские компании в ряде подотраслей (алюминиевой, никелевой, титановой) входят в группу мировых лидеров. Достижения участников рынка в мировом масштабе стало возможным благодаря активной инвестиционной политике предприятий отрасли. Так, например, объем инвестиций в 2006 году по сравнению с показателями 2000 года увеличился в 2,5 раза, и составляет 80 млрд. руб., а объем иностранных инвестиций вырос почти в 10 раз, достигнув 4,5 млрд. долл. При этом суммарный объем инвестиций в строительство и реконструкцию металлургических мощностей составляет в 2007-2010 гг. более 220 млрд. руб.

Список использованных источников

1. Колачев Б.А., Ливанов В.А., Елагин В.И. Металловедение и термическая обработка цветных металлов и сплавов. – М.: Металлургия, 1981. – 416 с.

2. Материаловедение: Учебник для высших технических учебных заведений / Б.Н. Арзамасов, И.И.Сидорин, Г.Ф.Косолапов и др.; под общ. ред. Б.Н. Арзамасова. // 2-е изд. – М.: Машиностроение, 1986. – 384 с.

3. Гуляев А.П. Металловедение. – М.: Металлургия, 1986. – 544 с.

4. Материалы будущего: Пер. с нем./ Под ред. А. Неймана. – Л.: Химия, 1985. – 240 с.

5. Венецкий С.И. Рассказы о металлах. – М.: Металлургия, 1985. – 240с.

Примечания

  1. Строго говоря из-за амфотерности химических свойств полуметаллы (металлоиды) представляют собой обособленную группу, не относясь ни к металлам, ни к неметаллам; К группе металлов их можно отнести лишь условно.
  2. Ломоносов М. В. Основы металлургии и горного дела. — Санкт-Петербург: Императорская Академия Наук, 1763. — 416 с.
  3. Этимологический словарь русского языка. Вып. 10: М / Под общей редакцией А. Ф. Журавлёва и Н. М. Шанского. — М.: Изд-во МГУ, 2007. — 400 с. ISBN 978-5-211-05375-5
  4.  (англ.) . Дата обращения 8 июня 2007.
  5.  (англ.) . Дата обращения 8 июня 2007.
  6. Поваренных А. С. Твердость минералов. — АН УССР, 1963. — С. 197—208. — 304 с.
  7. , с. 92.
  8. , с. 93—94.
  9. , с. 97.
  10. , с. 103.

Физические свойства металлов

Твёрдость

Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью. Ниже в таблице приводится твёрдость некоторых металлов по шкале Мооса.

Твёрдость некоторых металлов по шкале Мооса:
Твёрдость Металл
0.2 Цезий
0.3 Рубидий
0.4 Калий
0.5 Натрий
0.6 Литий
1.2 Индий
1.2 Таллий
1.25 Барий
1.5 Стронций
1.5 Галлий
1.5 Олово
1.5 Свинец
1.5 Ртуть(тв.)
1.75 Кальций
2.0 Кадмий
2.25 Висмут
2.5 Магний
2.5 Цинк
2.5 Лантан
2.5 Серебро
2.5 Золото
2.59 Иттрий
2.75 Алюминий
3.0 Медь
3.0 Сурьма
3.0 Торий
3.17 Скандий
3.5 Платина
3.75 Кобальт
3.75 Палладий
3.75 Цирконий
4.0 Железо
4.0 Никель
4.0 Гафний
4.0 Марганец
4.5 Ванадий
4.5 Молибден
4.5 Родий
4.5 Титан
4.75 Ниобий
5.0 Иридий
5.0 Рутений
5.0 Тантал
5.0 Технеций
5.0 Хром
5.5 Бериллий
5.5 Осмий
5.5 Рений
6.0 Вольфрам
6.0 β-Уран

Температура плавления

Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые металлы, например, олово и свинец, могут расплавиться на обычной электрической или газовой плите.

Плотность

В зависимости от плотности, металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0,53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22,6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Пластичность

Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0,003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы, такие, как золото, серебро, свинец, алюминий, осмий, могут срастаться между собой, но на это могут уйти десятки лет.

Электропроводность

Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Теплопроводность

Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей, и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Наименьшая теплопроводность — у висмута и ртути.

Цвет

Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

Классификация

Из 118 химических элементов, открытых на 2019 год, к металлам часто относят (единого общепринятого определения нет, например, полуметаллы и полупроводники не всегда относят к металлам):

6 элементов в группе щелочных металлов: Li, Na, K, Rb, Cs, Fr;

4 в группе щёлочноземельных металлов: Ca, Sr, Ba, Ra; а
также Mg и Be;

38 в группе переходных металлов:

— Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn;
— Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd;
— Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg;
— Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Cn;

7 в группе лёгких металлов: Al, Ga, In, Sn, Tl, Pb, Bi;

7 в группе полуметаллов: B, Si, Ge, As, Sb, Te, Po;

14 в группе лантаноидов + лантан (La): Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu;

14 в группе актиноидов (физические свойства изучены не у всех элементов) + актиний (Ac): Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr.

Также металлическими свойствами может обладать водород.

Таким образом, к металлам могут относится более 90 элементов из всех открытых.

В астрофизике термин «металл» может иметь другое значение и обозначать все химические элементы тяжелее гелия (см. Металличность).

Кроме того, в физике металлам, как проводникам, противопоставляются полупроводники и диэлектрики (см. также Полуметалл (спинтроника)).

Некоторые группы/семейства металлов (по разным классификациям)

Осмий

Алюминий

Барий

Металлы по химическим свойствам
  • Щелочные (например: Литий, Натрий, Калий)
  • Щёлочноземельные (например: Кальций, Стронций, Барий

    Другие, которые зачастую относят к щёлочноземельным: Бериллий, Магний

    )

  • Переходные (например: Уран, Титан, Железо, Никель, Кобальт, Молибден, Вольфрам, Платина)
  • Постпереходные

    Лёгкие (например: Алюминий, Олово)

    :

Металлы по физическим свойствам и отраслям экономики
  • Тяжёлые (например: Свинец, Медь, Ртуть, Кадмий, Кобальт)
  • Тугоплавкие (например: Молибден, Вольфрам)
  • Цветные (например: Свинец, Медь, Олово, Цинк, Никель)
  • Благородные: Золото, Серебро и металлы платиновой группы

Происхождение слова «металл»

Слово «металл» заимствовано из немецкого языка. Отмечается в «Травнике» Николая Любчанина, написанном в 1534 году: «…злато и серебро всех металей одолеваетъ». Окончательно усвоено в Петровскую эпоху. Первоначально имело общее значение «минерал, руда, металл»; разграничение этих понятий произошло в эпоху М. В. Ломоносова.

Металлом называется светлое тело, которое ковать можно. Таких тел находим только шесть: золото, серебро, медь, олово, железо и свинец. Разделяются на высокие и простые металлы; которое разнство в том состоит, что высоких одним огнём без помощи других материй в пепел сожечь не можно, а напротив того простые через едину онаго силу в пепел обращаются. … За полуметаллы почитаются мышьяк, сурьма, висмут, цинк и ртуть.
М. В. Ломоносов

Немецкое слово «metall» заимствовано из латинского языка, где «metallum» — «рудник, металл». Латинское, в свою очередь, заимствовано из греческого языка (μεταλλον — «рудник, копь»).

Характеристики и маркировка

К цветным относятся все металлы, кроме тех, которые изготавливаются на основе железа. Они применяются в различных сферах промышленности. Чтобы различать материалы между собой, была создана специальная маркировка. По ней можно определить механические свойства сплавов, температуру расплавления, прочность и другие параметры.

Маркировка разных видов цветных металлов:

  1. Медь и соединения на её основе. Главный материал обозначается буквой «М». После буквы пишут цифры, которые обозначают чистоту металла. На конце маркировки могут указываться дополнительные буквы. К — обозначает катодный, Б — бескислородный, Р — раскисленный. Если речь идёт о соединении, легирующие добавки обозначаются заглавными буквами дополнительных компонентов.
  2. Латунь — чистый сплав, обозначающийся буквой «Л», после которой указывается две цифры. Это обозначение содержания меди. Многокомпонентная латунь в своей маркировке имеет дополнительные буквы, указывающие на наличие легирующих компонентов. Далее пишутся цифры, между которыми ставятся прочерки. Первая из них указывает на содержание меди, остальные на количество легирующих добавок по процентам.
  3. Бронза маркируется буквами «Бр». Если на поверхности изделий из этого материала присутствует буква «Л», это означает что он является литейным.
  4. Алюминий — материал, который обозначается буквой «А». После неё указываются цифры, которые говорят о количестве содержащихся примесей. Буква «Л» стоящая после указания на алюминий обозначает его литейные качества. Буква «В» говорит о высокой прочности материала.

Остальные цветные металлы и соединения на их основе имеют похожую маркировку. Легирующие добавки обозначаются начальными буквами.

Виды и история открытия

К категории редкоземельных металлов (РЗМ) относятся 15 химических элементов. В таблице Менделеева они находятся под порядковыми номерами от 57 до 71. Схожие по своим химическим характеристикам, в это же время этим редкоземельным элементам присуще четко выраженная уникальность. Каждому свойственны свои технологические особенности.

Редкоземельные элементы имеют 2 семейства: иттербия и церия:

  1. Семейство Иттербия: Тулий, Гольмий, Иттербий, Гадолиний, Диспрозий, Тербий, Эрбий, Лютеций.
  2. В группу Церия входят: Самарий, Неодим, Лантан, Европий, Церий, Прометий, Празеодим

Такое деление производят на основании того, как растворяются выбранные компоненты в солях серных кислот.

Немного позже к списку добавились элементы: Иттрий, Скандий, Лантан, Лютеций. Таким образом список металлов редкоземельной группы состоит из 16 элементов.

Редкоземельные металлы обладают длинной историей открытия. Первое изучение «иттриевых земель» было проведено профессором химии Гандолином в 1790-х годах. В качестве объекта исследования он использовал минерал, найденный в горах Швеции. Позже этот вид горного образования получил название в его честь — гандолинит.

В 1840-х годах Мозандер выделил окись церия. Через 5 лет он же получил тербиевую и эрбиевую земли, используя при этом уже известный нам гандолинит. Последним из семейства редкоземельных металлов был открыт прометий. Его исследованием занимались Маринский и Гленденин, которые для своих экспериментов использовали осколки деления урана в ядерном реакторе.

Открытия редкоземельной группы металлов закончились лишь в середине 20 столетия, но эффективные промышленные методы их разделения развиваются до сих пор.

Самыми ценными и дорогими из списка редкоземельной группы являются:

  1. Тербий;
  2. Неодим;
  3. Европий;
  4. Лютеций.

Распространение редкоземельных металлов

Суммарное количество по массе редкоземельных элементов в недрах Земли равняется 0,01%, что относительно немало. Это больше, чем титан и свинец, вместе взятые. Наиболее часто встречаемыми из РЗМ являются церий, неодим и лантан.

На сегодня обнаружено примерно 240 минералов, в химическом составе которых можно найти редкоземельные металлы. В 62 из них суммарный процент РЗМ достигает 10%. По своей природе они представляют собой разного вида фториды, силикаты и фосфаты. Несмотря на такое огромное количество минералов для нужд производства годятся только некоторые из них. Главным образом это монацит, бастнезит, апатит и эвксенит.

Процент соотношения между отдельными редкоземельными металлами в горных образованиях достаточно изменчив. В монацитах и бастнезитах преобладают элементы цериевой подгруппы; в апатитах — иттриевой.

Литература

  • Тяжелые металлы // Большой Энциклопедический словарь (рус.). — 2000. — статья в Большом Энциклопедическом словаре
  • И.И. Дедю. Тяжелые металлы // Экологический энциклопедический словарь. — Кишинев: Главная редакция Молдавской советской энциклопедии (рус.). — 1989. — статья в Экологическом словаре
  • Н. К. Чертко и др. Биологическая функция химических элементов. — Справочное пособие. — Минск, 2012. — 172 с. — ISBN 978-985-7026-39-5.
  • Присутствие макрофитов в водной системе ускоряет снижение концентраций меди, свинца и других тяжёлых металлов в воде. // Водное хозяйство России. 2009. No. 2. с. 58—67.
Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации