Андрей Смирнов
Время чтения: ~10 мин.
Просмотров: 0

Расшифровка чпу (аббревиатуры), назначение, принцип действия и последовательность управления

Cтанки с числовым программным управлением (ЧПУ)

По своему функциональному назначению станки с ЧПУ применяются для фрезерования, гравировки, сверления, распила, лазерной резки. Станки, которые позволяют использовать несколько видов обработки одновременно, называются обрабатывающие центры с ЧПУ.

Использование станков и обрабатывающих центров с ЧПУ на любом производстве позволяет осуществлять такие проекты, которые при обычных технологиях оказались бы невыполнимыми или невыгодными. При изготовлении мебельных фасадов МДФ в первую очередь решается задача со сложными рельефными декорами, которые невозможно выполнить вручную. Использование графических программ при проектировании фасадов не только позволяет раскрыть весь потенциал дизайнерской мысли, но и сохранять выполненные проекты и после несложной коррекции применять их в будущем.

При массовом производстве фасадов МДФ на широкоформатных станках с ЧПУ появляется возможность отказаться от предварительного раскроя плит МДФ и выполнять полный цикл обработки с минимальными затратами времени и рабочей силы. С другой стороны, установка ЧПУ в небольшом помещении позволяет увеличить выпуск продукции, не расширяя производственные площади.

Что касается стоимости оборудования с ЧПУ, то здесь следует обратиться к показателям экономической выгоды от его использования, в том числе роста потребительского спроса за счет повышения качества и эстетической ценности конечной продукции.

Если вопрос, что такое ЧПУ, раскрыт в данной статье достаточно полно, то возникающий следом вопрос о необходимости приобрести фрезерный станок с ЧПУ, считаю, отпадет сам собой.

Другие статьи…

Мебельное производство

Где идет речь о производстве деревянных изделий из плит МДФ, подойдет станок с ЧПУ фрезерный

Для потребителя стало важно качество изделия, что можно достичь только при помощи машинной обработки при высоком количестве выпускаемой продукции. Плавность и точность получаемых рисунков поражают, а машинная обработка в то же время делает мебель доступнее

Простейшие операции ранее создавались посредством релейной логики. Но объемные изображения доступны только владельцам ЧПУ-систем. Скорость обработки может быть выше вдвое благодаря использованию двустороннего точения, когда одновременно выполняется несколько технологических операций. Лидерами в производстве контроллеров, способных справиться с такими задачами, являются производители электроники:

Реализовать простейший станок получается на базе обычного настольного компьютера. Но для движения осей все же потребуется управляющая плата. Стоимость таких решений невысока в сравнении с прибылью, приносимой за счет автоматизации производства.

Руководство

Это руководство нацелено на то, чтобы не дать вам совершить те же ошибки, на которые я потратил свое драгоценное время и деньги.

Мы рассмотрим все компоненты вплоть до болтов, глядя на преимущества и недостатки каждого типа каждой детали. Я расскажу о каждом аспекте проектирования и покажу, как создать ЧПУ фрезерный станок своими руками. Проведу вас через механику к программному обеспечению и всему промежуточному.

ДАВАЙТЕ НАЧНЕМ

ШАГ 1: Ключевые конструктивные решения

В первую очередь необходимо рассмотреть следующие вопросы:

  1. Определение подходящей конструкции конкретно для вас (например, если будете делать станок по дереву своими руками).
  2. Требуемая площадь обработки.
  3. Доступность рабочего пространства.
  4. Материалы.
  5. Допуски.
  6. Методы конструирования.
  7. Доступные инструменты.
  8. Бюджет.

ШАГ 2: Основание и ось X-оси

Тут рассматриваются следующие вопросы:

  1. Проектирование и построение основной базы или основания оси X.
  2. Разбивка различных конструкций на элементы.
  3. Жестко закрепленные детали.
  4. Частично закрепленные детали и др.

ШАГ 3: Проектирование козловой оси Y

В этом пункте рассматриваются следующие вопросы:

  1. Проектирование и строительство портальной оси Y.
  2. Разбивка различных конструкций на элементы.
  3. Силы и моменты на портале и др.

ШАГ 4: Схема сборки оси Z

Здесь рассматриваются следующие вопросы:

  1. Проектирование и сборка сборки оси Z.
  2. Силы и моменты на оси Z.
  3. Линейные рельсы / направляющие и расстояние между подшипниками.
  4. Выбор кабель-канала.

ШАГ 5: Линейная система движения

В этом пункте рассматриваются следующие вопросы:

  1. Подробное изучение систем линейного движения.
  2. Выбор правильной системы конкретно для вашего станка.
  3. Проектирование и строительство собственных направляющих при малом бюджете.
  4. Линейный вал и втулки или рельсы и блоки?

ШАГ 6: Компоненты механического привода

В этом пункте рассматриваются следующие аспекты:

  1. Детальный обзор частей привода.
  2. Выбор подходящих компонентов для вашего типа станка.
  3. Шаговые или серводвигатели.
  4. Винты и шарико-винтовые пары.
  5. Приводные гайки.
  6. Радиальные и упорные подшипники.
  7. Муфта и крепление двигателя.
  8. Прямой привод или редуктор.
  9. Стойки и шестерни.
  10. Калибровка винтов относительно двигателей.

ШАГ 7: Выбор двигателей

В этом шаге необходимо рассмотреть:

  1. Подробный обзор двигателей с ЧПУ.
  2. Типы двигателей с ЧПУ.
  3. Как работают шаговые двигатели.
  4. Типы шаговых двигателей.
  5. Как работают сервомоторы.
  6. Типы серводвигателей.
  7. Стандарты NEMA.
  8. Выбор правильного типа двигателя для вашего проекта.
  9. Измерение параметров мотора.

ШАГ 8: Конструкция режущего стола

В этом шаге рассматриваются следующие вопросы:

  1. Проектирование и строительство собственных столов при малом бюджете.
  2. Перфорированный режущий слой.
  3. Вакуумный стол.
  4. Обзор конструкций режущего стола.
  5. Стол можно вырезать при помощи фрезерного станка с ЧПУ по дереву.

ШАГ 9: Параметры шпинделя

В этом шаге рассматриваются следующие вопросы:

  1. Обзор шпинделей с ЧПУ.
  2. Типы и функции.
  3. Ценообразование и затраты.
  4. Варианты монтажа и охлаждения.
  5. Системы охлаждения.
  6. Создание собственного шпинделя.
  7. Расчет нагрузки стружки и силы резания.
  8. Нахождение оптимальной скорости подачи.

ШАГ 10: Электроника

В этом пункте рассматриваются следующие вопросы:

  1. Панель управления.
  2. Электропроводка и предохранители.
  3. Кнопки и переключатели.
  4. Круги MPG и Jog.
  5. Источники питания.

ШАГ 11: Параметры контроллера Программного Управления

В этом шаге рассматриваются следующие вопросы:

  1. Обзор контроллера ЧПУ.
  2. Выбор контроллера.
  3. Доступные опции.
  4. Системы с замкнутым контуром и разомкнутым контуром.
  5. Контроллеры по доступной цене.
  6. Создание собственного контроллера с нуля.

ШАГ 12. Выбор программного обеспечения

В этом пункте рассматриваются следующие вопросы:

  1. Обзор программного обеспечения, связанного с ЧПУ.
  2. Подбор программного обеспечения.
  3. Программное обеспечение CAM.
  4. Программное обеспечение САПР.
  5. Програмное обеспечение NC Controller.

——————————————————————————————————————————————————–

Конструктивные особенности числового оборудования

Конструкция любого ЧПУ станка обязана обеспечивать возможность совмещения разного вида обрабатывания деталей:

  • фрезеровку – точение;
  • шлифовку – фрезеровку;
  • загрузку заготовок – выгрузку изделий;
  • смену инструментов, различных приспособлений под автоматическим программным управлением.

Подобный станок с технологическими достаточно широкими возможностями обуславливает высокую надежность, точную обработку деталей при достаточном быстродействии приводов в любом станке. Чтобы существенно повысить качество, точность обрабатывания деталей необходимо:

  • устранить зазоры механизмов;
  • использовать в станках специальные датчики, обеспечивающие обратную связь;
  • снизить потери на трение;
  • понизить тепловую деформацию обеспечивая равномерность температурного режима.

Важно. Иногда все эти детали подобных станков изготавливают из синтетического бетона или полимерного гранита, что существенно способствует повышению их жесткости, улучшению вибрационной устойчивости

Подсистема управления

Мозгом станков с ЧПУ является микроконтроллер. Этот вид оборудования выступает основой системы контроля. Основные органы управления получают данные благодаря управляющей программе, после чего передает команды на исполнительные механизмы.

Кроме микроконтроллера или процессора в операционную систему управления входят передаточные устройства и человеко-машинный интерфейс. На схемах эти подсистемы представляются в виде стоек числового управления, иногда они объединяются в группу.

Подсистемы управления делятся на две категории:

  • первый вид – открытые;
  • второй вид – закрытые.

Открытые

При управлении открытых программных средств используется более интерактивный человеко-машинный интерфейс. Программирование таких систем можно осуществлять непосредственно через компьютер. В них же применяется 3D моделирование. Довольно часто программирование алгоритмов управления стойками можно производить при помощи языков высокоуровневого прикладного программирования, после чего переформатировать код в автоматическом режиме на язык, являющийся понятным контроллеру. Основным признаком таких систем является высокий уровень удобства, а также универсальность начинки и легкость ремонта, взаимозаменяемость многих деталей. Управляющая стойка обеспечивает корректировку программы и описания станка.

Поэтому иногда станки с открытым интерфейсом дают сбои или плохо приспособлены для длительной работы высокой сложности. Когда программируется контурное или другое устройство ЧПУ, важную роль играет именно человеческий фактор.

Закрытые

Системы закрытого типа обычно уже имеют ряд написанных программ. Эти программы иногда бывают заданы аппаратно, и для перепрошивки такого агрегата понадобится полностью разбирать корпус, и заменять детали. Программирование системы ЧПУ замкнутого типа ограничивается комбинированием команд на встроенном языке в человеко-машинном интерфейсе. Некоторые закрытые системы имеют встроенные на аппаратном уровне управляющие воздействия. Такие системы специально разработана для создания одного или нескольких типов деталей. Реже в комплекте к машине поставляется программа для ПК, позволяющая писать управляющий код на встроенном языке для компьютера.

Производители оборудования почти никогда не раскрывают архитектуру закрытых систем. При выходе из строя управляющего механизма придется обращаться в компанию-производитель. Определить поломку можно по характерным признакам. Однако благодаря тому, что все части замкнутой ЧПУ проходят множественные проверки на совместимость агрегатов, описанное оборудование отличается высокой степенью надежности и редко выходит из строя. Неоспоримым преимуществом данного типа управления является высокая надежность.

Недостатками до недавнего времени были некая ограниченность и неудобство управления. Особенностью современных систем замкнутого типа выступает обладание встроенным числовым программным обеспечением и удобным человеко-машинным интерфейсом. Они позволяют непосредственно на станке осуществить разработку программы, а также провести 3D моделирование всего процесса, чтобы исключить ошибки.

Существенными недостатками были и остаются высокая цена приобретения и обслуживания, а также сложность обслуживания в связи с тем, что управляющая часть и структура засекречены.

(в ЧПУ) — с английского на русский

Все языкиАбхазскийАдыгейскийАфрикаансАйнский языкАканАлтайскийАрагонскийАрабскийАстурийскийАймараАзербайджанскийБашкирскийБагобоБелорусскийБолгарскийТибетскийБурятскийКаталанскийЧеченскийШорскийЧерокиШайенскогоКриЧешскийКрымскотатарскийЦерковнославянский (Старославянский)ЧувашскийВаллийскийДатскийНемецкийДолганскийГреческийАнглийскийЭсперантоИспанскийЭстонскийБаскскийЭвенкийскийПерсидскийФинскийФарерскийФранцузскийИрландскийГэльскийГуараниКлингонскийЭльзасскийИвритХиндиХорватскийВерхнелужицкийГаитянскийВенгерскийАрмянскийИндонезийскийИнупиакИнгушскийИсландскийИтальянскийЯпонскийГрузинскийКарачаевскийЧеркесскийКазахскийКхмерскийКорейскийКумыкскийКурдскийКомиКиргизскийЛатинскийЛюксембургскийСефардскийЛингалаЛитовскийЛатышскийМаньчжурскийМикенскийМокшанскийМаориМарийскийМакедонскийКомиМонгольскийМалайскийМайяЭрзянскийНидерландскийНорвежскийНауатльОрокскийНогайскийОсетинскийОсманскийПенджабскийПалиПольскийПапьяментоДревнерусский языкПортугальскийКечуаКвеньяРумынский, МолдавскийАрумынскийРусскийСанскритСеверносаамскийЯкутскийСловацкийСловенскийАлбанскийСербскийШведскийСуахилиШумерскийСилезскийТофаларскийТаджикскийТайскийТуркменскийТагальскийТурецкийТатарскийТувинскийТвиУдмурдскийУйгурскийУкраинскийУрдуУрумскийУзбекскийВьетнамскийВепсскийВарайскийЮпийскийИдишЙорубаКитайский

Все языкиРусскийПерсидскийИспанскийИвритНемецкийНорвежскийИтальянскийСуахилиКазахскийНидерландскийХорватскийДатскийУкраинскийКитайскийКаталанскийАлбанскийКурдскийИндонезийскийВьетнамскийМаориТагальскийУрдуИсландскийВенгерскийХиндиИрландскийФарерскийПортугальскийФранцузскийБолгарскийТурецкийСловенскийПольскийАрабскийЛитовскийМонгольскийТайскийПалиМакедонскийКорейскийЛатышскийГрузинскийШведскийРумынский, МолдавскийЯпонскийЧешскийФинскийСербскийСловацкийГаитянскийАрмянскийЭстонскийГреческийАнглийскийЛатинскийДревнерусский языкЦерковнославянский (Старославянский)АзербайджанскийТамильскийКвеньяАфрикаансПапьяментоМокшанскийЙорубаЭрзянскийМарийскийЧувашскийУдмурдскийТатарскийУйгурскийМалайскийМальтийскийЧерокиЧаморроКлингонскийБаскский

Единичные векторы. Орты. Декартова система координат

Единичный вектор — это вектор, абсолютная величина (модуль) которого равен единице. Для обозначения единичного вектора мы будем использовать нижний индекс е. Так, если задан вектор а, то его единичным вектором будет вектор ае. Этот единичный вектор направлен туда же, куда направлен и сам вектор а, и его модуль равен единице, то есть ае = 1.
Очевидно, а = а·ае (а — модуль вектора а). Это следует из правила, по которому выполняется операция умножения скаляра на вектор.Единичные векторы часто связывают с координатными осями системы координат (в частности, с осями декартовой системы координат). Направления этих векторов совпадают с направлениями соответствующих осей, а их начала часто совмещают с началом системы координат.
Напомню, что декартовой системой координат в пространстве традиционно называется тройка взаимно перпендикулярных осей, пересекающихся в точке, которая называется началом координат. Координатные оси обычно обозначают буквами X , Y , Z и называют соответственно осью абсцисс, осью ординат и осью аппликат. Сам Декарт пользовался только одной осью, на которой откладывались абсциссы. Заслуга использования системы осей принадлежит его ученикам. Поэтому фраза декартова система координат исторически ошибочна. Лучше говорить прямоугольная система координат или ортогональная система координат. Тем не менее, изменять традиции мы не станем и в дальнейшем будем считать, что декартова и прямоугольная (ортогональная) системы координат — это одно и то же.Единичный вектор, направленный вдоль оси Х, обозначается i, единичный вектор, направленный вдоль оси Y , обозначается j, а единичный вектор, направленный вдоль оси Z, обозначается k. Векторы i, j, k называются ортами (рис. 12, слева), они имеют единичные модули, то есть
i = 1, j = 1, k = 1.

Рис. 12

Оси и орты прямоугольной системы координат в некоторых случаях имеют другие названия и обозначения. Так, ось абсцисс X может называться касательной осью, а ее орт обозначается τ (греческая строчная буква тау), ось ординат – осью нормали, ее орт обозначается n , ось аппликат – осью бинормали, ее орт обозначается b. Зачем менять названия, если суть остается той же?
Дело в том, что, например, в механике при изучении движения тел прямоугольная система координат используется очень часто. Так вот, если сама система координат неподвижна, а изменение координат движущегося объекта отслеживается в этой неподвижной системе, то обычно оси обозначают X, Y, Z, а их орты соответственно i, j, k.
Но нередко, когда объект движется по какой-то криволинейной траектории (например, по окружности) бывает удобнее рассматривать механические процессы в системе координат, движущейся с этим объектом. Именно для такой движущейся системы координат и используются другие названия осей и их ортов. Просто так принято. В этом случае ось X направляют по касательной к траектории в той ее точке, в которой в данный момент этот объект находится. И тогда эту ось называют уже не осью X, а касательной осью, а ее орт обозначают уже не i, а τ. Ось Y направляют по радиусу кривизны траектории (в случае движения по окружности – к центру окружности). А поскольку радиус перпендикулярен касательной, то ось называют осью нормали (перпендикуляр и нормаль – это одно и то же). Орт этой оси обозначают уже не j, а n. Третья ось (бывшая Z) перпендикулярна двум предыдущим. Это – бинормаль с ортом b (рис. 12, справа). Кстати, в этом случае такую прямоугольную систему координат часто называют «естественной» или натуральной.

Книги по изучению физики и для подготовки к ЕГЭ
Эти книги должен иметь каждый старшеклассник, абитуриент и студент!

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации