Андрей Смирнов
Время чтения: ~16 мин.
Просмотров: 0

Гост 26365-84 резина. общие требования к методам усталостных испытаний

Динамика твердого тела

Некоторые определить выражения (определяется при применении наиболее подходящих формул) можно только с учетом правил, касающихся динамики твердых объектов. Этому вопросу посвящен целый раздел. При расчете потенциальной энергии сжатой пружины также применяются некоторые законы этого раздела

Динамика твердого тела рассматривается по причине того, что в большинстве случаев механизм совершает действие, связанное с непосредственным перемещением какого-либо объекта.

Рассматриваемое свойство изделия может изменяться в зависимости от динамики твердого тела. Это связано с тем, что на изделие оказывается и воздействие со стороны окружающей среды. Примером можно назвать трение или нагрев.

Задача

Динамометр, рассчитанный на 40 Н, имеет пружину жесткостью 500 . Какую работу нужно совершить, чтобы растянуть пружину от середины шкалы до последнего деления?

В условии нам не дано значений удлинения пружины динамометра, поэтому введем его сами. Пусть удлинение пружины на середине шкалы равно (см. рис. 8).

Рис. 8. Удлинение шкалы

Следовательно, когда пружина растянута с максимальной силой, то удлинение равно . Воспользуемся для последнего случая законом Гука, поскольку мы знаем значение максимальной силы и жесткости пружины.

Следовательно, нам необходимо рассчитать работу при удлинении от 4 см до 8 см. Воспользуемся формулой, полученной на уроке:

Работа равна разности между значениями потенциальной энергии пружины, растянутой до полного удлинения и до полвины.

Ответ:.

Теперь мы с вами можем рассчитывать потенциальную энергию тела, поднятого над землей, и потенциальную энергию тела, которое испытывает упругую деформацию.

Список литературы

1. Соколович Ю.А., Богданова Г.С Физика: справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.

2. Перышкин А.В. Физика: учебник 10 класс. – Издательство: Дрофа.: 2010. – 192 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-сайт fizika.in (Источник)

2. Интернет-сайт Единой коллекции цифровых образовательных ресурсов (Источник)

3. Интернет-сайт объединения учителей физики Санкт-Петербурга (Источник)

Домашнее задание

1. Что такое сила упругости?

2. Напишите формулу, по которой можно найти работу силы упругости.

3. Что такое потенциальная энергия тела?

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Примеры решения задач

ПРИМЕР 1

ЗаданиеКамень, имеющий массу при выстреле из рогатки начал полет со скоростью . Каков коэффициент упругости резинового шнура рогатки, если при выстреле шнур получил удлинение ? Считайте, что изменением сечения шнура можно пренебречь.
РешениеВ момент выстрела потенциальная энергия растянутого шнура () переходит в кинетическую энергию камня (). По закону сохранения энергии можно записать:

Потенциальную энергию упругой деформации резинового шнура найдем как:

где — коэффициент упругости резины,

кинетическая энергия камня:

следовательно

Выразим коэффициент жесткости резины из (1.4):

Ответ

ПРИМЕР 2

ЗаданиеПружину, имеющую жесткость , сжимает сила, величина которой равна . Какова работа () приложенной силы при дополнительном сжатии этой же пружины еще на ?
РешениеСделаем рисунок.

Деформированное
упругое тело (например, растянутая или сжатая пружина) способно, возвращаясь в
недеформированное состояние, совершить работу над соприкасающимися с ним
телами. Следовательно, упруго деформированное тело обладает потенциальной
энергией. Она зависит от взаимного положения частей тела, например витков
пружины. Работа, которую может совершить растянутая пружина, зависит от
начального и конечного растяжений пружины. Найдем работу, которую может
совершить растянутая пружина, возвращаясь к нерастянутому состоянию, т. е.
найдем потенциальную энергию растянутой пружины.

Пусть
растянутая пружина закреплена одним концом, а второй конец, перемещаясь,
совершает работу. Нужно учитывать, что сила, с которой действует пружина, не
остается постоянной, а изменяется пропорционально растяжению. Если
первоначальное растяжение пружины, считая от нерастянутого состояния, равнялось
, то
первоначальное значение силы упругости составляло , где — коэффициент пропорциональности,
который называют жесткостью пружины. По мере сокращения пружины эта сила линейно
убывает от значения до нуля. Значит, среднее значение
силы равно .
Можно показать, что работа равна этому среднему, умноженному
на перемещение точки приложения силы:

Таким
образом, потенциальная энергия растянутой пружины

Такое
же выражение получается для сжатой пружины.

В
формуле (98.1) потенциальная энергия выражена через жесткость пружины и через
ее растяжение .
Заменив на
, где — упругая сила,
соответствующая растяжению (или сжатию) пружины , получим выражение

которое
определяет потенциальную энергию пружины, растянутой (или сжатой) силой . Из этой формулы
видно, что, растягивая с одной и той же силой разные пружины, мы сообщим им
различный запас потенциальной энергии: чем жестче пружина, т.е. чем больше ее
упругость, тем меньше потенциальная энергия; и наоборот: чем мягче пружина, тем
больше энергия, которую она запасет при данной растягивающей, силе. Это можно уяснить
себе наглядно, если учесть, что при одинаковых действующих силах растяжение
мягкой пружины больше, чем жесткой, а потому больше и произведение силы на
перемещение точки приложения силы, т. е. работа.

Эта
закономерность имеет большое значение, например, при устройстве различных
рессор и амортизаторов: при посадке на землю самолета амортизатор шасси,
сжимаясь, должен произвести большую работу, гася вертикальную скорость
самолета. В амортизаторе с малой жесткостью сжатие будет больше, зато
возникающие силы упругости будут меньше и самолет будет лучше предохранен от
повреждений. По той же причине при тугой накачке шин велосипеда дорожные толчки
ощущаются резче, чем при слабой накачке.

Момент силы и момент импульса относительно оси

Рассмотрение деформации пружины проводится также с учетом момента силы и импульса относительно оси. Эти два параметра позволяют рассчитать все требуемые показатели с более высокой точностью. Довольно распространенным вопросом можно назвать чему равен момент силы – векторная величина, которая определяется векторному произведению радиуса на вектор приложенной силы.

Момент импульса – величина, которая применяется для определения количества вращательного движения.

Среди особенностей подобного показателя можно отметить следующее:

  1. Масса вращения. Объект может характеризоваться различной массой.
  2. Распределение относительно оси. Ось может быть расположена на различном расстоянии от самого объекта.
  3. Скорость вращения. Это свойство считается наиболее важным, в зависимости от конструкции он может быть постоянным или изменяться.

Расчет каждого показателя проводится при применении соответствующей формулы. В некоторых случаях проводится измерение требуемых вводных данных, без которых провести вычисления не получится.

Работа и потенциальная энергия тела, поднятого над Землей

Величина потенциальной энергии зависит от выбора нулевого уровня энергии. В поле тяготения Земли нулевым уровнем энергии обладает тело, находящееся на поверхности планеты.

Работа силы тяжести

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком:

A = – ∆Ep = –(mgh – mgh) = mg(h – h)

Если тело поднимается, сила тяжести совершает отрицательную работу. Если тело падает, сила тяжести совершает положительную работу.

Пример №3. Шарик массой 100 г скатился с горки длиной 2 м, составляющей с горизонталью угол 30о. Определить работу, совершенную силой тяжести.

Сначала переведем единицы измерения в СИ: 100 г = 0,1 кг. Под действием силы тяжести положение тела относительно Земли изменилось на величину, равную высоте горки. Высоту горки мы можем найти, умножим ее длину на синус угла наклона. Начальная высота равна высоте горки, конечная — нулю. Отсюда:

A = mg(h – h) = 0,1∙10(2∙sin30o – 0) =2∙0,5 = 1 (Дж)

Потенциальная энергия протяженного тела

Работа силы тяжести

Потенциальная энергия протяженного тела выражается через его центр масс. К примеру, чтобы поднять лом длиной l и массой m, нужно совершить работу равную:

A = mgh

где h — высота центра массы лома над поверхностью Земли. Так как лом однородный по всей длине, его центр масс будет находиться посередине между его концами, или:

Отсюда работа, которую необходимо совершить, чтобы поднять этот лом, будет равна:

Пример №4. Лежавшую на столе линейку длиной 0,5 м ученик поднял за один конец так, что она оказалась в вертикальном положении. Какую минимальную работу совершил ученик, если масса линейки 40 г?

Переведем единицы измерения в СИ: 40 г = 0,04 кг. Минимальная работа, необходимая для поднятия линейки за один конец, равна:

Работа и изменение потенциальной энергии упруго деформированного тела

Вспомним, что работа определяется формулой:

A = Fs cosα

Когда мы сжимаем пружину, шарик перемещается в ту же сторону, в которую направлена сила тяги. Если мы растягиваем ее, шарик перемещается так же в сторону направления силы тяги. Поэтому вектор силы упругости и вектор перемещения сонаправлены, следовательно, угол между ними равен нулю, а его косинус — единице:

Модуль силы тяги равен по модулю силе упругости, поэтому:

Перемещение определяется формулой:

s = x – x

Следовательно, работа силы тяги по сжатию или растяжению пружины равна:

Но известно, что потенциальная энергия упруго деформированного тела равна:

Следовательно, работа силы, под действием которой растягивается или сжимается пружина, равна изменению ее потенциальной энергии:

Энергия — упругая деформация

Так как энергия упругой деформации связана с самим импульсом, то направление течения энергии, очевидно, всегда совпадает с направлением распространения импульса. Поэтому при отражении импульса должно изменяться на противоположное и направление течения энергии. Но поток энергии меняет направление на противоположное либо при изменении знака скорости ча. Поэтому для изменения направления распространения импульса должен изменяться знак либо деформа -, ции, либо скорости частиц.

Так как энергия упругой деформации связана с самим импульсом деформаций, то направление течения энергии, очевидно, всегда совпадает с направлением распространения импульса. Поэтому при отражении импульса деформаций должно изменяться на противоположное и направление течения энергии. Но поток энергии меняет направление на противоположное либо при изменении знака скорости частиц упругого тела, либо при изменении знака деформации. Именно с этим связано то, что при отражении импульса от конца стержня изменяется знак либо деформации, либо скорости частиц.

Следовательно, энергия упругих деформаций упруго-пластической среды стационарна; отсюда поле приращений деформаций, так же как и поле напряжений упруго-пластической среды, определяется минимальными принципами, включающими только упругий потенциал.

Схема сил и моментов.

В зоне восстановления энергия упругой деформации переходит в кинетическую энергию качения колеса. Разница между удельными давлениями движущегося и неподвижного колеса определяет величину потери работы на трение.

Изменение во времени энергии упругих деформаций и энергий, поглощаемых при пластическом течении и при микроразрушении, показано на рис. 6 для материала, расположенного в седьмой от вершины надреза расчетной ячейке. По мере того как конец трещины приближается и нагружает эту ячейку, энергия упругих деформаций резко увеличивается. Затем вскоре происходит пластическое течение, и материал в конце трещины поглощает упругую энергию. Несколько позже начинается процесс микроразрушения, продолжающийся около 25 мкс, после чего ячейка разрушается.

Схема разрушения путем отрыва в стенке сосуда, работающего под давлением, или трубы с плоской заглушкой.

А — увеличение энергии упругой деформации, обусловленное сжатием содержимого сосуда. Показатель степени k при величине Д значительно меньше единицы.

А — приращение энергии упругой деформации в объеме тела, не занятом пластической деформацией, и вызванное работой внешних сил на перемещениях, возникших в результате приращения длины трещины; 8AWp — npHpaiu eHne энергии деформации в пластически деформированном объеме тела, вызванное работой внешних сил.

Влияние запаса потенциальной энергии деформации нагрузочного устройства на протекание деформации и предельное состояние.| Изменение нагрузки на образец по времени при различных значениях запаса энергии упругой деформации в нагрузочном устройстве.

Чем больше запас энергии упругой деформации нагрузочного устройства, тем меньше изменение текущего значения нагрузки, действующей на образец ( рис. 20), и тем быстрее и легче осуществляется разрыв его.

Как говорилось выше, энергия упругой деформации деформированного тела равна сумме работ, совершаемых при деформировании каждого малого элемента тела.

В связи с определением энергии упругой деформации при выпучивании нам понадобятся выражения для кривизны кривой, ограничивающей область выпучивания, и для нормальной кривизны поверхности.

Таким образом, поток энергии упругой деформации пропорционален произведению напряжения в деформированном теле и скорости движения тела.

Это выражение дает плотность энергии упругой деформации при растяжении ( или сжатии) и в том случае, когда деформация неравномерна. В последнем случае для нахождения плотности энергии в некоторой точке стержня нужно подставлять в (25.4) значение е в данной точке.

Энергия упругой деформации

Если груз, подвешенный на проволоке, растягивает подвес и опускается, значит, сила тяжести совершает работу. За счет такой работы увеличивается энергия деформированного тела, которое перешло из ненапряженного состояния в напряженное. Получается, что при деформации внутренняя энергия тела увеличивается. Рост внутренней энергии тела заключается в увеличении потенциальной энергии, которая связана со взаимным расположением молекул тела. Если мы имеем дело с упругой деформацией, то после снятия нагрузки, дополнительная энергия исчезает, и за ее счет силы упругости совершают работу. В ходе упругой деформации температура твердых тел существенно не увеличивается. В этом состоит их значительное отличие от газов, которые при сжатии нагреваются. При пластической деформации твердые тела могут значительно увеличивать свою температуру. В повышении температуры, следовательно, кинетической энергии молекул, отражается рост внутренней энергии тела при пластической деформации. При этом увеличение внутренней энергии происходит также за счет работы сил, вызывающих деформацию.

Для того чтобы растянуть или сжать пружину следует выполнить работу () равную:

где — величина характеризующая изменение длины пружины (удлинение пружины); — коэффициент упругости пружины. Данная работа идут на изменение потенциальной энергии пружины ():

При записи выражения (2) считаем, что потенциальная энергия пружины без деформации равна нулю.

Энергия упругой деформации

Если груз, подвешенный на проволоке, растягивает подвес и опускается, значит, сила тяжести совершает работу. За счет такой работы увеличивается энергия деформированного тела, которое перешло из ненапряженного состояния в напряженное. Получается, что при деформации внутренняя энергия тела увеличивается. Рост внутренней энергии тела заключается в увеличении потенциальной энергии, которая связана со взаимным расположением молекул тела. Если мы имеем дело с упругой деформацией, то после снятия нагрузки, дополнительная энергия исчезает, и за ее счет силы упругости совершают работу. В ходе упругой деформации температура твердых тел существенно не увеличивается. В этом состоит их значительное отличие от газов, которые при сжатии нагреваются. При пластической деформации твердые тела могут значительно увеличивать свою температуру. В повышении температуры, следовательно, кинетической энергии молекул, отражается рост внутренней энергии тела при пластической деформации. При этом увеличение внутренней энергии происходит также за счет работы сил, вызывающих деформацию.

Для того чтобы растянуть или сжать пружину следует выполнить работу () равную:

где — величина характеризующая изменение длины пружины (удлинение пружины); — коэффициент упругости пружины. Данная работа идут на изменение потенциальной энергии пружины ():

При записи выражения (2) считаем, что потенциальная энергия пружины без деформации равна нулю.

Вычисление работы силы упругости

Груз совершил известное перемещение, величину силы упругости мы также знаем, векторы перемещения и силы упругости параллельны. Казалось бы, все ясно – нужно умножить величину силы на величину перемещения и получить значение работы. Однако здесь не все так просто – разберемся почему.

О чем нам говорит формула, которая выражает величину силы упругости? О том, что сила упругости – величина не постоянная, она меняется по мере перемещения груза. И действительно, величина этой силы, как мы видим из формулы, зависит от координаты центра груза. Формула же для работы силы, которую мы применяли раньше, справедлива лишь в том случае, если сила не меняет свою величину по мере движения. Как же тогда быть? Один из вариантов выхода из данной ситуации мог бы состоять в том, что мы применим такой же метод, который применялся нами ранее в разделе кинематика при расчете перемещения тела, движущегося равноускоренно.

Можно всю траекторию движения груза разбить на очень маленькие участки (участки, в пределах которых силу упругости можно считать практически постоянной). Далее в пределах каждого такого участка мы можем рассчитать работу силы упругости ввиду ее практического постоянства. Затем работа на всей области движения груза будет складываться из всех этих маленьких работ на этих участках. Таким образом, мы сможем посчитать работу силы упругости на всей траектории движения груза. На рис. 4 приведены детали такого расчета.

Рис. 4. Зависимость силы упругости от координаты движения

Видно, что если отложить на графике зависимость модуля силы упругости от модуля координаты груза, затем проделать описанное выше разбиение на маленькие участки, то величина работы на каждом маленьком участке численно равна площади фигуры, ограниченной графиком: осью абсцисс и двумя перпендикулярами к этой оси (см. рис. 5).

Рис. 5. Площадь фигуры

Если просуммировать значение работы на каждом участке (площадь маленьких фигур), то получим площадь большой фигуры, показанной на рис. 6.

Рис. 6. Площадь большой фигуры

Поскольку данная фигура является прямоугольной трапецией, то мы можем воспользоваться формулой для расчета площади такой фигуры – это полусумма оснований, умноженная на высоту. В результате преобразований получим такую формулу – работа равна разности между величиной:

К этому результату можно прийти и несколько иным способом. Для вычисления работы силы упругости в этом способе необходимо просто взять среднее значение силы упругости и умножить его на перемещение тела. Это утверждение можно записать как:

,

где  среднее значение силы упругости, которое равно полусумме начального и конечного ее значений. Если данное выражение  подставить в формулу для работы, то при помощи простых алгебраических преобразований мы получим то же самое выражение, что получали ранее:

Как видно из этой формулы, работа зависит лишь от начальной и конечной координаты центра груза, и еще одно замечание: как видно из последней формулы, работа силы упругости никоим образом не зависит от массы груза. Это обусловлено тем, что и сама сила упругости не зависит от этой массы.

Теперь внимательнее посмотрим на последнюю формулу – если вынести -1 за скобки, то получим, что работа есть взятая со знаком минус разность между значениями некоторой величины, равной половине произведения жесткости пружины на квадрат ее удлинения в конечный и начальный моменты времени.

Вспомним, как мы поступили при расчете работы силы тяжести на прошлом уроке. В тот раз мы столкнулись с новой для нас физической величиной, разность между значениями которой в конечной и начальной моменты времени равнялась взятой со знаком « — » работе силы тяжести. Это величина, равная произведению массы тела на ускорение свободного падения и высоту, на которую было поднято тело над некоторым уровнем, мы назвали потенциальной энергией тела, поднятого над землей.

Постигаем закон Гука

Все объекты природы могут деформироваться, т.е. менять свою форму или объем, под действием приложенной силы. Если такие деформации (т.е. изменения) исчезают после прекращения действия приложенной силы, то они называются упругими. Упругость играет важную роль в технике. Упругие пружины используются для гашения удара при посадке космического корабля на поверхность планеты. Свернутые в спираль упругие пластины применяются в заводных механизмах часов. Даже в мышеловке используется упругая деформация пружины.

Еще в XVII-M веке английский физик Роберт Гук, изучая упругие свойства разных материалов, вывел закон, названный его именем. Согласно закону Гука, для упругого деформирования материала требуется приложить силу, величина которой прямо пропорциональна его деформации. Например, чтобы растянуть пружину на величину ​\( x \)​, потребуется приложить внешнюю силу ​\( F_{вн} \)​, которая равна:

где ​\( k \)​ — это коэффициент пропорциональности.

Точнее говоря, вектор деформации ​\( \mathbf{x} \)​ всегда направлен противоположно силе сопротивления пружины (или силе упругости) \( \mathbf{F} \), а потому в векторную формулировку закона Гука обычно входит знак “минус”:

Растягиваем и сжимаем пружины

В реальном мире, помимо упругих деформаций, имеются еще и пластические деформации. Так называют деформации, которые остаются в объекте, хотя бы частично, даже после прекращения действия внешних сил. Если сила не превосходит некоторой известной величины, которая называется пределом упругости, то возникающая деформация будет пластической. Предел упругости имеет разные значения для разных материалов. Если деформируемый объект, например пружина, испытывает только упругие деформации, то его называют идеально упругим, например, идеально упругой пружиной. Коэффициент пропорциональности ​\( k \)​ в законе Гука ​\( F=kx \)​ называется коэффициентом упругости объекта, который зависит от материала объекта, его размеров и измеряется в Н/м.

Допустим, вам нужно спроектировать подвеску автомобиля массой 1000 кг, состоящую из 4 пружин, которые могут идеально упруго деформироваться на расстояние 0,5 м. Каким коэффициентом упругости должна обладать пружина, чтобы выдержать вес автомобиля?

Вес автомобиля равен ​\( mg \)​, где ​\( g \)​ — это ускорение свободного падения под действием силы гравитационного притяжения. Это значит, что на каждую пружину приходится вчетверо меньшая нагрузка ​\( mg/4 \)​.

Определим упругую деформацию пружины под действием этой нагрузки по формуле закона Гука:

т.е. коэффициент упругости равен:

Подставляя значения, получим:

Итак, чтобы выдержать вес автомобиля, потребуется пружина с коэффициентом упругости равным 4,9·103 Н/м. Не забудьте, что каждый элемент подвески автомобиля должен обладать определенным запасом прочности, чтобы выдерживать непредсказуемые превышения нагрузки, например на ухабах. Однако эта задача выходит за рамки данного курса.

Изучаем особенности закона Гука

Как уже упоминалось выше, в векторную формулировку закона Гука обычно входит знак “минус”:

Таким образом, знак “минус” выражает следующую особенность упругой деформации: сила упругости всегда противоположна деформации. На рис. 12.1 схематически показаны направления силы упругости и деформации при сжатии и растяжении пружины.

Как видите, при отсутствии растяжении или сжатия нет и деформации (см. схему А на рис. 12.1). Если пружина сжимается влево, то сила упругости направлена вправо (см. схему Б на рис. 12.1), а если пружина растягивается вправо, то сила упругости направлена влево (см. схему В на рис. 12.1).

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации