Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 0

Азотирование стали

Оборудование для азотирования

Для проведения газового азотирования используются преимущественно шахтные, ретортные и камерные печи. Для подготовки аммиака перед подачей в печь используется диссоциатор.

Для проведения каталитического газового азотирования используются преимущественно шахтные, ретортные и камерные печи, оснащённые встроенными катализаторами и кислородными зондами для определения насыщающей способности атмосферы.

Для проведения процессов ионно-плазменного азотирования применяются специализированные установки, в которых происходит нагрев изделий за счёт катодной бомбардировки ионами и, собственно, насыщение.

Для азотирования из растворов электролитов применяются установки для электрохимико-термической обработки.

Ионное азотирование

Ионное азотирование сокращает общую длительность процесса, позволяет получить диффузионный слой регулируемого состава и строения, незначительные деформации и обладает большой экономичностью.

Ионное азотирование применяют для деталей, изготовленных из хромистых, хромомолибденовых и других легированных сталей, содержащих достаточное количество элементов, которые обеспечивают повышение прочности и твердости диффузионного слоя при азотировании.

Ионное азотирование осуществляют в герметичном контейнере, в котором создается разреженная азотосодержащая атмосфера. Для этой цели применяют чистый азот, аммиак или смесь азота и водорода.

Ионное азотирование по сравнению с азотированием в печах позволяет сократить общую продолжительность процесса в два-три раза, уменьшить деформацию деталей за счет равномерного нагрева, создает возможность регулирования процесса в целях получения азотированного слоя с заданными свойствами. Азотирование коррозионно-стойких сталей и сплавов достигается без дополнительной де-пассивирующей обработки. Достигается толщина азотированного слоя 1 мм и более, твердость поверхности — 500 — 1500 HV. Ионному азотированию подвергают детали насосов, форсунок, ходовые винты станков, валы и многое другое.

Влияние давления ( а, концентрации пропана ( б и аргона ( в при азотировании в тлеющем разряде в аммиачной плазме при 520 С, 1 ч на толщину азотированного слоя технического железа ( /, сталей 40Х ( 2 и 38ХМЮА ( 3.

Ионное азотирование ( по сравнению с печным) имеет следующие преимущества: 1) ускоряет диффузионные процессы в 1 5 — 2 раза; 2) позволяет получить диффузионный слой регулируемого состава и строения; 3) характеризуется незначительными деформациями изделий и высоким классом чистоты поверхности 4) дает возможность азотировать коррозионно-стойкие, жаропрочные и мартен-ситностареющие стали без дополнительной депассивирующей обработки; 5) значительно сокращает общее время процесса за счет уменьшения времени нагрева и охлаждения садки; 6) обладает большой экономичностью, повышает коэффициент использования электроэнергии, сокращает расход насыщающих газов; 7) нетоксично и отвечает требованиям по защите окружающей среды.

Ионное азотирование позволяет получить диффузионные слои регулируемого состава и строения.

Ионное азотирование и цементация — это процесс нанесения диффузионных покрытий в плазме тлеющего разряда. Достигается активизация процессов в газовой среде и соответственно сокращается в 2 — 3 раза продолжительность азотирования и цементации при повышении качества покрытия.

Схема установки для азотирования в магнитном поле.

Ионное азотирование значительно ускоряет процесс обработки деталей. В силу особенностей тлеющего разряда плотность тока на всей поверхности катода поддерживается постоянной, поэтому удается получить равномерный нагрев деталей сложной геометрической формы.

Газовое и ионное азотирование в тлеющем разряде хромовых КЭП с образованием нитридов хрома в поверхностном слое приводит к повышению твердости, а рекристаллизационные процессы в хромовом слое при температуре азотирования снижают степень искаженности и плотность дефектов кристаллической решетки.

Процесс ионного азотирования реализуется в две стадии: первая — очистка поверхности катодным распылением; вторая — собственно насыщение.

Применение ионного азотирования увеличивает стойкость инструмента более чем в 2 раза во всем исследованном диапазоне скоростей резания.

Процесс ионного азотирования реализуемся в две стадии: первая — очистка поверхности катодным распылением; вторая — собственно насыщение.

При ионном азотировании недопустимо присутствие кислорода в рабочей камере установки.

Предприятия в Воронежской области

ООО ПП «Регионгаздеталь»

Воронежская обл., г. Воронеж, Ленинский пр., д. 160

Рейтинг по отзывам:

(0.0)

Стаж (лет): 9
Сотрудников: 50
Площадь (м²): ?
Станков: ?

Подробнее о предприятии
Показать услуги (138)

Алмазно-расточные работы
Горизонтально-расточные работы
Долбёжная обработка
Заточка инструмента
Зенкерование отверстий
Зубодолбёжная обработка
Зубофрезерная обработка
Зубошлифовальные работы
Координатно-расточные работы
Круглошлифовальные работы
Механическая обработка на обрабатывающем центре
Накатка резьбы
Нарезание резьбы
Плоскошлифовальные работы
Протягивание
Развертывание отверстий
Резьбошлифовальные работы
Сверление отверстий на станках с ЧПУ
Сверление отверстий на универсальных станках
Слесарные работы
Строгальная обработка
Токарная обработка на станках с ЧПУ
Токарная обработка на универсальных станках
Токарно-автоматные работы
Фрезерная обработка на станках с ЧПУ
Фрезерная обработка на универсальных станках
Хонингование
Шлицефрезерная обработка
Электроэрозионная обработка
Дисперсное твердение
Закалка ТВЧ
Криогенная обработка
Нормализация
Объёмная закалка
Отжиг металла
Отпуск металла
Поверхностная закалка
Сорбитизация
Улучшение металла
Азотирование
Алитирование
Анодирование
Борирование
Бороалитирование
Газодинамическое напыление
Газотермическое напыление
Гальваническое покрытие медью (меднение, омеднение)
Гальваническое покрытие никелем (никелирование)
Гальваническое покрытие хромом (хромирование)
Гальваническое покрытие цинком (цинкование, оцинковка)
Карбонитрация
Многослойное покрытие медью и никелем
Многослойное покрытие медью, никелем и хромом
Нитроцементация
Оксидирование
Плакирование
Силицирование
Термодиффузионное цинкование
Травление металла
Химическое фосфатирование
Хромоалитирование
Хромосилицирование
Цементация
Цианирование
Электрохимическая полировка металла
Газовая/газопламенная/кислородная резка
Гидроабразивная резка
Лазерная резка
Плазменная резка
Поперечная резка рулонной стали
Продольная резка рулонной стали
Продольно-поперечная резка рулонной стали
Резка арматуры
Резка на ленточнопильном станке
Резка пресс-ножницами
Рубка на гильотинных ножницах
Фигурная резка труб
Вальцовка листового металла
Вальцовка профиля
Вальцовка пруткового металла
Вальцовка трубы
3D гибка проволоки
Гибка листового металла
Гибка на прессе
Гибка профиля
Гибка пруткового металла
Гибка трубы
Аргонная (аргонодуговая) сварка
Газовая сварка
Диффузионная сварка
Газопрессовая сварка
Дугопрессовая сварка
Контактная сварка
Кузнечная сварка
Лазерная сварка
Наплавка
Полуавтоматическая дуговая сварка
Пайка
Роботизированная сварка
Ручная дуговая сварка
Сварка арматуры
Сварка взрывом
Сварка под слоем флюса
Сварка трением
Сварка труб
Термитная сварка
Ультразвуковая сварка
Химическая сварка
Холодная сварка
Электронно-лучевая сварка
Вырубка металла
Волочение
Ковка
Листовая штамповка
Объёмная штамповка
Перфорация металла
Правка плоского металлопроката
Прессование металла
Пробивка металла
Прокатка металла
Прокатка-волочение
Прокатка-прессование
Пуклевание
Раскатка
Раскрой металла на координатно-пробивном прессе
Художественная ковка
Изготовление деталей по образцам заказчика
Изготовление деталей по чертежам заказчика
Изготовление нестандартных металлоконструкций
Изготовление типовых металлоконструкций
Магнитнопорошковый контроль
Маркировка плазмой
Покраска кистью
Покраска краскопультом
Порошковая покраска
Изготовление изделий из нержавеющей стали
Ультразвуковой контроль
Химический анализ

«Не нашли подходящего исполнителя? Разместите заказна портале и получайте предложения от предприятий уже сегодня.Это бесплатно и не займет много времени»

Разместить заказ

Особенности технологии азотирования стали

Насыщение аммиаком подразумевает нагревание стальной детали в атмосфере аммиака (NH3) при температуре от 500 до 700 °С. Для нагревания применяются специальные герметичные печи, через которые по технологии пропускается аммиак. В процессе нагревания происходит разложение последнего, и в результате выделяется атомарный азот, поглощающийся поверхностью стали и проникающий глубоко внутрь.


Основным требованием к азотированному слою является повышенный показатель твердости и износоустойчивости. И достигается это, благодаря применению сплавов, в состав которых входит алюминий. Чаще всего речь идет о марке 38ХМЮА, которая кроме железа и углерода включает в себя хром, молибден и алюминий. В процессе насыщения азотом данной стали образуются нитриды железа, хрома, молибдена и алюминия, которые придают поверхностному слою обрабатываемой детали особенно высокие показатели твердости (порядка 1200 HV). Для производства деталей, которые принципиально допускают меньший показатель твердости упроченный поверхность, допускается использование азотируемых сталей, в состав которых не входит алюминий. Такие стали имеют при пониженной твердости азотированного слоя более высокие механические характеристики и технологичность. Под механическими характеристиками при этом подразумеваются такие показатели, как предел текучести, ползучести, длительной прочности материала, а также прочности на разрыв, а под технологичностью – свойства металла, определяющие его приспособленность к достижению минимальных затрат при производстве и эксплуатации.


Основной недостаток, который имеет технология насыщения стали азотом – это очень большая длительность процедуры. В среднем процесс занимает не менее 90 часов. Глубина азотированного слоя после обработки получается от 0,3 до 0,6 мм.

Процедура может производиться по двум режимам:

  • одноступенчатому (с выдержкой 90 часов при температуре до 520 °С)
  • двухступенчатому( с выдержкой от 15 до 20 часов при температуре до 520 °С и с выдержкой от 20 до 25 часов при температуре до 570 °С).

Если речь идет о декоративной обработке азотом, ей могут подвергаться любые типы стали, включая черные углеродистые. Температура при этом может варьироваться от 600 до 700 °С, а выдержка – от 50 минут до 1 часа.

Если подвергать обработке необходимо не всю деталь, а только ее часть, неподлежащие азотированию места покрывают тонким слоем олова.

Основные виды азотирования

Азотирование в соляных ваннах

Погружение и выдержка деталей в растворе расплавленных солей при температуре 530—650 градусов Цельсия (не затрагивает структурное изменение материала).

Получаемая структура поверхности имеет :

  • Толщина слоя : 0,01-0,1 мм;
  • Поверхностная твердость — 400—1200 HV
  • Снижение коэффициента трения в 1,5—5 раз;
  • Хрупкость слоя — отсутствует;
  • Повышение задиростойкости, включая нержавеющие стали;
  • Повышение усталостной прочности в 1,5—2 раза;
  • Коробление и поводки длинномерных деталей — практически отсутствуют.
  • Коррозийная стойкость может достигать 800 часов в солевом тумане.

По сравнению с другими технологиями (газовым и плазменным азотированием), азотирование в соляных ваннах имеет меньшую глубину азотируемого слоя, но имеет лучшее показатели по коррозийной стойкости и шероховатости поверхности. Основным преимуществом является возможность быстро достичь необходимых характеристик, тем самым снижая время и стоимость обработки.

Газовое азотирование

Насыщение поверхности металла производится при температурах от 400 °C (для некоторых сталей) до 1200 °C (аустенитные стали и тугоплавкие металлы). Средой для насыщения является диссоциированный аммиак. Для управления структурой и механическими свойствами слоя при газовом азотировании сталей применяют:

  • двух-, трёхступенчатые температурные режимы насыщения
  • разбавление диссоциированного аммиака:
    • воздухом
    • реже водородом

Контрольными параметрами процесса являются:

  • степень диссоциации аммиака
  • расход аммиака
  • температура
  • расходы дополнительных технологических газов (если применяются).

Каталитическое газовое азотирование

Это последняя модификация технологии газового азотирования. Средой для насыщения является аммиак, диссоциированный при температуре 400—600 градусов Цельсия на катализаторе в рабочем пространстве печи. Для управления структурой и механическими свойствами слоя при каталитическом газовом азотировании сталей применяют изменение потенциала насыщения. В целом применяются более низкие температуры, чем при газовом азотировании.

Ионно-плазменное азотирование

Технология насыщения металлических изделий в азотсодержащем вакууме (примерно 0,01 атм.), в котором возбуждается тлеющий электрический разряд. Анодом служат стенки камеры нагрева, а катодом — обрабатываемые изделия. Для управления структурой слоя и механическими свойствами слоя применяют (в разные стадии процесса):

  • изменение плотности тока
  • изменение расхода азота
  • изменение степени разрежения
  • добавки к азоту особо чистых технологических газов:
    • водорода
    • аргона
    • метана

Использование анодного эффекта для диффузионного насыщения обрабатываемой поверхности азотом в многокомпонентных растворах электролитов, один из видов скоростной электрохимико-термической обработки (анодный электролитный нагрев) малогабаритных изделий. Анод-деталь при наложении постоянного напряжения в диапазоне от 150 до 300 В разогревается до температур 450—1050 °C. Достижение таких температур обеспечивает сплошная и устойчивая парогазовая оболочка, отделяющая анод от электролита. Для обеспечения азотирования в электролит, кроме электропроводящего компонента, вводят вещества-доноры, обычно нитраты.

Принцип процесса

Если сравнивать азотирование с традиционной цементацией, то первый вариант предлагает множество весомых преимуществ, нехарактерных для других технологий. По этой причине его до сих пор считают самым лучшим и эффективным способом обработки стальных конструкций с целью получения максимальных показателей прочности без применения дополнительной термообработки. Плюсом методики принято считать сохранение прежних размеров заготовки, что позволяет применять её уже к готовым изделиям, прошедшим термическую закалку с высоким отпуском и шлифование до окончательной формы. Успешное завершение азотирования позволяет проводить конечную полировку и другую обработку.

Процесс выполняется под воздействием аммиака, который нагревается до определенных температур. В результате материал поддаётся насыщению азотом и обретает массу уникальных свойств, включая:

  • улучшенную износостойкость металлических деталей, которая обеспечивается повышением индекса твердости их поверхностного слоя;
  • более высокую выносливость или усталостную прочность заготовки;
  • приобретение стойкой антикоррозийной защиты, которая остаётся прежней даже при воздействии с водой, воздухом и газовоздушной средой.

Прошедшие азотную обработку детали гораздо качественнее, чем аналогичные изделия, поддавшиеся цементации. Известно, что после второй процедуры слой сохраняет стабильную твердость лишь при условиях, что температурные показатели не превышают 225 градусов. В случае с азотом максимальный порог достигает 550−600 градусов. Это объясняется выработкой поверхностного слоя, который в несколько раз прочнее, чем традиционная закалка и цементация.

Service Providers

We may employ third party companies and individuals to facilitate our Service («Service Providers»), to provide the Service on our behalf, to perform Service-related services or to assist us in analyzing how our Service is used.

These third parties have access to your Personal Data only to perform these tasks on our behalf and are obligated not to disclose or use it for any other purpose.

Analytics

We may use third-party Service Providers to monitor and analyze the use of our Service.

Google Analytics
Google Analytics is a web analytics service offered by Google that tracks and reports website traffic. Google uses the data collected to track and monitor the use of our Service. This data is shared with other Google services. Google may use the collected data to contextualize and personalize the ads of its own advertising network.
You can opt-out of having made your activity on the Service available to Google Analytics by installing the Google Analytics opt-out browser add-on. The add-on prevents the Google Analytics JavaScript (ga.js, analytics.js, and dc.js) from sharing information with Google Analytics about visits activity.
For more information on the privacy practices of Google, please visit the Google Privacy & Terms web page: https://policies.google.com/privacy?hl=en

Типы азотируемых сталей

Обработке по технологии азотирования могут подвергаться как углеродистые, так и легированные стали, характеризующихся содержанием углерода в пределах 0,3–0,5%. Максимального эффекта при использовании такой технологической операции удается добиться в том случае, если ей подвергаются стали, в химический состав которых входят легирующие элементы, формирующие твердые и термостойкие нитриды. К таким элементам, в частности, относятся молибден, алюминий, хром и другие металлы, обладающие подобными характеристиками. Стали, содержащие молибден, не подвержены такому негативному явлению, как отпускная хрупкость, которая возникает при медленном остывании стального изделия. После азотирования стали различных марок приобретают следующую твердость:

Твердость сталей после азотирования

Легирующие элементы, находящиеся в химическом составе стали, увеличивают твердость азотированного слоя, но вместе с тем уменьшают его толщину. Наиболее активно на толщину азотируемого слоя оказывают влияние такие химические элементы, как вольфрам, молибден, хром и никель.

38Х2МЮА Это сталь, которая после азотирования отличается высокой твердостью наружной поверхности. Алюминий, содержащийся в химическом составе такой стали, снижает деформационную стойкость изделия, но в то же время способствует повышению твердости и износостойкости его наружной поверхности. Исключение алюминия из химического состава стали позволяет создавать из нее изделия более сложной конфигурации.

40Х, 40ХФА

Данные легированные стали используются для изготовления деталей, применяемых в области станкостроения.

30Х3М, 38ХГМ, 38ХНМФА, 38ХН3МА

Эти стали служат для производства изделий, подвергающихся в процессе своей эксплуатации частым циклическим нагрузкам на изгиб.

30Х3МФ1

Из данного стального сплава изготавливаются изделия, к точности геометрических параметров которых предъявляются высокие требования. Для придания более высокой твердости деталям из данной стали (это преимущественно детали топливного оборудования) в ее химический состав могут добавлять кремний.


Характеристики некоторых сталей после азотирования

Service Providers

We may employ third party companies and individuals to facilitate our Service («Service Providers»), to provide the Service on our behalf, to perform Service-related services or to assist us in analyzing how our Service is used.

These third parties have access to your Personal Data only to perform these tasks on our behalf and are obligated not to disclose or use it for any other purpose.

Analytics

We may use third-party Service Providers to monitor and analyze the use of our Service.

Google Analytics
Google Analytics is a web analytics service offered by Google that tracks and reports website traffic. Google uses the data collected to track and monitor the use of our Service. This data is shared with other Google services. Google may use the collected data to contextualize and personalize the ads of its own advertising network.
You can opt-out of having made your activity on the Service available to Google Analytics by installing the Google Analytics opt-out browser add-on. The add-on prevents the Google Analytics JavaScript (ga.js, analytics.js, and dc.js) from sharing information with Google Analytics about visits activity.
For more information on the privacy practices of Google, please visit the Google Privacy & Terms web page: https://policies.google.com/privacy?hl=en

Transfer Of Data

Your information, including Personal Data, may be transferred to — and maintained on — computers located outside of your state, province, country or other governmental jurisdiction where the data protection laws may differ than those from your jurisdiction.

If you are located outside Bulgaria and choose to provide information to us, please note that we transfer the data, including Personal Data, to Bulgaria and process it there.

Your consent to this Privacy Policy followed by your submission of such information represents your agreement to that transfer.

Ionitech Ltd. will take all steps reasonably necessary to ensure that your data is treated securely and in accordance with this Privacy Policy and no transfer of your Personal Data will take place to an organization or a country unless there are adequate controls in place including the security of your data and other personal information.

Металлы и сплавы, подвергаемые азотированию

Существуют определенные требования, которые предъявляются к металлам перед проведением рассматриваемой процедуры

Как правило, уделяется внимание концентрации углерода. Виды сталей, подходящих для азотирования, самые различные, главное условие заключается в доле углерода 0,3-0,5%

Лучших результатов достигают при применении легированных сплавов, так как дополнительные примеси способствуют образованию дополнительных твердых нитритов. Примером химической обработки металла назовем насыщение поверхностного слоя сплавов, которые в составе имеют примеси в виде алюминия, хрома и другие. Рассматриваемые сплавы принято называть нитраллоями.

Микроструктура сталей после азотирования

Внесение азота проводится при применении следующих марок стали:

  1. Если на деталь будет оказываться существенное механическое воздействие при эксплуатации, то выбирают марку 38Х2МЮА. В ее состав входит алюминий, который становится причиной снижения деформационной стойкости.
  2. В станкостроении наиболее распространение получили стали 40Х и 40ХФА.
  3. При изготовлении валов, которые часто подвергаются изгибающим нагрузкам применяют марки 38ХГМ и 30ХЗМ.
  4. Если при изготовлении нужно получить высокую точность линейный размеров, к примеру, при создании деталей топливных агрегатов, то используется марка стали 30ХЗМФ1. Для того чтобы существенно повысить прочность поверхности и ее твердость, предварительно проводят легирование кремнем.

Information Collection And Use

We collect several different types of information for various purposes to provide and improve our Service to you.

Personal Data

While using our Service, we may ask you to provide us with certain personally identifiable information that can be used to contact or identify you («Personal Data»). Personally identifiable information may include, but is not limited to:

Cookies and Usage Data

Usage Data

We may also collect information how the Service is accessed and used («Usage Data»). This Usage Data may include information such as your computer’s Internet Protocol address (e.g. IP address), browser type, browser version, the pages of our Service that you visit, the time and date of your visit, the time spent on those pages, unique device identifiers and other diagnostic data.

Tracking & Cookies Data

We use cookies and similar tracking technologies to track the activity on our Service and hold certain information.

Cookies are files with small amount of data which may include an anonymous unique identifier. Cookies are sent to your browser from a website and stored on your device. Tracking technologies also used are beacons, tags, and scripts to collect and track information and to improve and analyze our Service.

You can instruct your browser to refuse all cookies or to indicate when a cookie is being sent. However, if you do not accept cookies, you may not be able to use some portions of our Service.

Examples of Cookies we use:

  • Session Cookies. We use Session Cookies to operate our Service.
  • Preference Cookies. We use Preference Cookies to remember your preferences and various settings.
  • Security Cookies. We use Security Cookies for security purposes.

Service Providers

We may employ third party companies and individuals to facilitate our Service («Service Providers»), to provide the Service on our behalf, to perform Service-related services or to assist us in analyzing how our Service is used.

These third parties have access to your Personal Data only to perform these tasks on our behalf and are obligated not to disclose or use it for any other purpose.

Analytics

We may use third-party Service Providers to monitor and analyze the use of our Service.

Google Analytics
Google Analytics is a web analytics service offered by Google that tracks and reports website traffic. Google uses the data collected to track and monitor the use of our Service. This data is shared with other Google services. Google may use the collected data to contextualize and personalize the ads of its own advertising network.
You can opt-out of having made your activity on the Service available to Google Analytics by installing the Google Analytics opt-out browser add-on. The add-on prevents the Google Analytics JavaScript (ga.js, analytics.js, and dc.js) from sharing information with Google Analytics about visits activity.
For more information on the privacy practices of Google, please visit the Google Privacy & Terms web page: https://policies.google.com/privacy?hl=en

Типы сред при азотировании

Процесс азотирования стали в реальности проводят не по одной, а по нескольким технологиям, отсюда разнообразие видов азотирования. Это связано с тем, что для одних типов металлов более эффективно усваивается азот в одной среде, для других – в другой. Но это не главное. Среда позволяет получить определенное качество поверхности либо изменить скоростной режим выполнения операции по азотированию стали. Наиболее распространенные технологии, которые используются на предприятиях:

  • диффузия азота в среде газовой на основе пропана с аммиаком;
  • диффузия азота при использовании разряда тлеющего;
  • диффузия азотная в среде жидкого характера.

Аммиачно-пропановая среда

Азотирование в газе из смеси пропана с аммиаком сейчас наиболее применимый способ укрепления поверхности стали. Соотношение компонентов смеси берется равнозначным, температуру по шкале Цельсия догоняют до 570 градусов выше нуля, обработку проводят на протяжении трех часов.

Полученный поверхностный слой можно охарактеризовать как высокопрочную твердую поверхность с отличной износостойкостью, и это несмотря на маленькую толщину нитридов. В численных единицах твердость изделия возрастает до показателей 1100–600 HV.

Тлеющий разряд

Другими словами, тлеющий разряд – это среда разряженного состояния при ионно-плазменном азотировании. Очень распространенный метод насыщения азотом поверхности стальных изделий. Особенностью этого метода является то, что, кроме помещения заготовки в печь муфельную, где происходит нагнетание температуры, к этой заготовке подключают электрический контакт с отрицательным потенциалом (то есть получается отрицательный электрод), положительным же электродом выступает сама печь муфельная.

Ионное азотирование создает ионный поток между печью и изделием, который приобретает вид плазмы, и состоит она из элементов NH₃ или N₂. Таким образом, в поверхностный слой начинают диффундировать азотные молекулы, эффективно насыщая его.

Плазменное азотирование проходит в два этапа:

  1. Очищение поверхности заготовки путем распыления катода.
  2. Непосредственное насыщение стали азотом.

Основное преимущество метода в том, что при ионном плазменном насыщении процесс можно ускорить в несколько раз.

Жидкая среда

Кроме перечисленных двух сред для проведения операций азотирования, существует еще одна среда, подходящая для такого метода. Это жидкая среда, где применяется расплав солей цианистых, компоненты которых под действием принципа диффузии проникают в рабочий поверхностный слой металла.

Условия для протекания процесса определяются высокой температурой до уровня 570 градусов по Цельсию и длительностью проведения обработки, которая может продолжаться до 3 часов (самое меньшее – 30 минут насыщения).

Как протекает процесс азотирования

Детали из металла помещают в герметично закрытый муфель, который затем устанавливается в печь для азотирования. В печи муфель с деталью нагревают до температуры, которая обычно находится в интервале 500–600°, а затем выдерживают некоторое время при таком температурном режиме.

Вакуумная печь для термической обработки с системой газового азотирования

Чтобы сформировать внутри муфеля рабочую среду, необходимую для протекания азотирования, в него под давлением подается аммиак. Нагреваясь, аммиак начинает разлагаться на составные элементы, данный процесс описывает следующая химическая формула:

2NH3 → 6H + 2N.

Атомарный азот, выделяющийся в процессе протекания такой реакции, начинает диффузировать в металл, из которого изготовлена обрабатываемая деталь, что приводит к образованию на ее поверхности нитридов, характеризующихся высокой твердостью. Чтобы закрепить результат и не дать поверхности детали окислиться, муфель вместе с изделием и аммиаком, который в ней продолжает оставаться, медленно охлаждают вместе с печью для азотирования.

Нитридный слой, формирующийся на поверхности металла в процессе азотирования, может иметь толщину в интервале 0,3–0,6 мм. Этого вполне достаточно для того, чтобы наделить изделие требуемыми прочностными характеристиками. Обработанную по такой технологии сталь можно не подвергать никаким дополнительным методам обработки.

Классификация процессов азотирования

Процессы, протекающие в поверхностном слое стального изделия при его азотировании, достаточно сложны, но уже хорошо изучены специалистами металлургической отрасли. В результате протекания таких процессов в структуре обрабатываемого металла формируются следующие фазы:

  • твердый раствор Fe3N, характеризующийся содержанием азота в пределах 8–11,2%;
  • твердый раствор Fe4N, азота в котором содержится 5,7–6,1%;
  • раствор азота, формирующийся в α-железе.

Дополнительная α-фаза в структуре металла формируется тогда, когда температура азотирования начинает превышать 591°. В тот момент, когда степень насыщения данной фазы азотом достигает своего максимума, в структуре металла формируется новая фаза. Эвтектоидный распад в структуре металла происходит тогда, когда степень его насыщения азотом достигает уровня 2,35%.

Клапана высокотехнологичных двигателей внутреннего сгорания обязательно проходят процесс азотирования

3 Различные среды для проведения процесса азотирования стали

Сейчас достаточно активно используется методика насыщения металлов азотом, осуществляемая в атмосфере, состоящей из 50 % аммиака и 50 % пропана либо из аммиака и эндогаза в тех же равных пропорциях. Длится процедура не более 3 часов при температуре 570 градусов. В результате формируется карбонитридный слой небольшой толщины, который характеризуется повышенной износостойкостью и малой хрупкостью по сравнению со слоем, получаемым по обычной схеме.

Твердость слоя в данном случае варьируется в пределах 600–1100 НV (для легированных сплавов и сталей). Рекомендована методика для тех изделий, к которым выдвигаются повышенные требования по величине предела выносливости в процессе эксплуатации.

Существует и технология химико-термического упрочнения металлов, предполагающая выполнение операции в тлеющем разряде. Производят ее в азотсодержащей разряженной атмосфере посредством подключения заготовки к катоду (отрицательно заряженный электрод). Контейнер агрегата при этом выполняет функцию положительного электрода (анода).

Методика с применением тлеющего разряда обеспечивает снижение общей длительности операции в несколько раз. Суть ее такова: разряд возбуждается между анодом и катодом, ионы газа (N2 или NH3) направляются на поверхность отрицательно электрода и нагревают его до требуемой температуры. Процесс идет в два этапа. Сначала, используя катодное распыление, поверхность очищают, а затем осуществляют непосредственно насыщение.

Распыление выполняется при давлении до 0,2 мм рт. ст. и напряжении до 1400 В на протяжении 5–60 минут. Поверхность в течение этой операции имеет температуру до 250 ˚С. Затем приступают ко второй стадии обработки металла, которая проводится при следующих условиях:

  • 1–24 часа – длительность;
  • 400–1100 В – рабочее напряжение;
  • 1–10 мм рт. ст. – давление;
  • 470–580 ˚С – температура насыщения.

Также достаточно популярным считается и тенифер-процесс (насыщение азотом в жидкой среде), выполняемый в цианистых расплавленных слоях на протяжении 30–180 минут при температуре 570 градусов.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации