Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 0

Газовая сварка

Техника сварки

Сварка пропаном предполагает применение следующих двух методик:

  • высокотемпературный нагрев кромок заготовок, последующее их оплавление и окончательное соединение;
  • формирование рабочего шва методом наплавки или напыления.

Во втором случае используется специальная присадочная проволока из мягкого металла, необходимая для того, чтобы сварочная ванна оставалась полностью насыщенной.

При проведении рабочих операций по первой из этих методик расходуется большое количество пропана, поскольку для оплавления металлических кромок требуются высокие температуры. Поэтому чаще всего предпочтение отдаётся второму способу сварки, при котором на нагрев присадочной проволоки из легкоплавких металлов тратится заметно меньше энергии.

Оба этих подхода при работе с пропаном в целом приводят к одному и тому же результату. Однако они принципиально различаются по расходу газовой смеси, затрачиваемому на работу времени и функциональности (другими словами – по своей экономичности).

Сварка посредством наплавки, помимо экономии средств и времени, обеспечивает повышенную прочность шва и выглядит более эстетично. Именно эта методика используется при прокладке и обустройстве магистральных трубопроводов, а также при сварке различных изделий и элементов строительных конструкций.

Расход сварочных материалов

Расход горючего газа: при толщине материала s = 1 мм 100 ацетилена (из 1 кг карбида кальция получают 300 л ацетилена; для полного разложения 1 кг карбида кальция необходимо 10л воды).

Расход сварочной проволоки при газовой сварке в зависимости от толщины металла (при разделке кромок с углом раскрытия 50°)

Максимально допустимый отбор газа из баллона: ацетилена 1000, кислорода 10 000 из каждого баллона.

Рабочие давления, регистрируемые манометром редуктора: для ацетилена 0,2, для кислорода 2,5 — 3,5 кг/см².

Таблица 1.1

ПараметрАцетилен С2Н2Бытовой газВодород H2Пропан С3Н8
Мощность пламени, ккал/(см². с) Температура пламени при использовании кислорода, °С10,73,033,342,56
3200200021002750
Концентрация, обеспечивающая воспламенение, % (объемн.)2,8 — 826,5 — 354,1 — 752,1 — 9,5
2,8 — 934,5 — 953,0 — 45
Минимальная температура воспламенения в кислороде, °С300450450490
1,1710,6800,0902,004
Условия храненияВ стальном баллоне под давлением до 15 кг/см²Отбор из городской сетиВ стальном баллоне под давлением до 150 кг/см²В стальном баллоне
Цвет маркировки баллонаЖелтыйКрасныйКрасный

Гранулометрия зерен карбида (по TGL 11649, лист I):

ГруппаРазмер зерен карбида, мм
Пылевидный3 мм, а = 50°.

Меры предосторожности

Поскольку при обращении с газовой горелкой создаются значительные по объёму зоны с высокотемпературным режимом – всегда следует помнить о соблюдении требований .

Согласно действующим нормативам газосварочные работы с пропаном должны проводиться в специально предназначенных для этих целей рукавицах, надёжно защищающих ладони от возможных ожогов.

Помимо этого, нежелателен длительный визуальный контакт с ядром пламени, поскольку повышенные световые нагрузки способны привести к поражению роговицы глаза.

Категорически воспрещается прикасаться к газовому оборудованию испачканными в масле руками, так как при соединении смазочных веществ с кислородом возможно мгновенное воспламенение и аварийный разрыв баллона.

Особое внимание должно уделяться вопросу хранению баллонов с пропаном и кислородом, которые, как правило, содержатся в специально изготовленных для этих целей металлических шкафах. Предполагается, что доступ к таким хранилищам строго ограничен

Можно сказать еще несколько слов о достоинствах резки и сварки посредством пропана. Огромный опыт работ, организованных и проводимых по этой методике, свидетельствует о высоких качественных показателях методики, а также о соответствующем уровне её функциональности.

Такие факторы, как удобство и доступность, экономичность и высокое качество шва позволяют оценивать технику сваривания металлических заготовок пропаном как ни в чём не уступающую классической электродуговой сварке.

Характеристика

Сварочная ацетиленовая горелка — это специальное устройство, в которое подаётся для сгорания особый газ (ацетилен). Его используют чаще других приспособлений для газовой сварки. Причины популярности вполне очевидны:

  • лёгкость использования;

  • экономичность;

  • пригодность для работы даже при ограниченном наборе оборудования;

  • высокая эффективность применения (оправданная даже на атомных и иных ответственных объектах).

Температура горения ацетилена больше, чем у любого другого из сварочных газов. Она достигает 3200 градусов. Причина состоит в том, что реакция ацетиленового горения — эндотермическая, в то время как другие газы поглощают тепло в процессе распада. Полное сгорание 1 куб. м. этого газа потребует использовать 2,5 куб. м. воздуха. Таковы расчеты, проведённые химиками на основе формул реагирующих веществ.

Однако на практике в пламени ацетилен сгорает лишь неполно, поэтому при реальной сварке расход воздуха не превышает 1-1,2 куб. м. Из-за этого общая полезная производительность по теплу вместо теоретически рассчитанных 13500 ккал на 1 м3 составляет только 5120 ккал на 1 м3. На практике чаще всего используют кислородно-ацетиленовую смесь, в которой 55% приходится на ацетилен, а остальные 45% массы представлены кислородом.

Полезно разобраться также, чем ацетиленовая горелка отличается от пропановой на практике. Первый тип в основном используется для работы со сравнительно тонким (не более 6 мм) металлом. Наконечники горелочных устройств содержат, кроме инжектора, также мундштук и трубку. Пропорции отверстий в мундштуках и инжекторах рассчитываются строго индивидуально для каждого используемого газа. Поэтому для замены газа приходится использовать другой наконечник, желательно того же производителя.

Результат

Пламя ацетилена в воздухе сильно коптит, и выглядит вполне заурядно:

С включением кислорода все меняется:

Можно плавить и поджигать сталь, резать все-таки не хватает мощности (надо брать более толстый наконечник, увеличивать давление):

Оказалось, гибкое стеклянное «оптоволокно» получается автомагически — когда расплавленное стекло капает, как только толщина шейки становится достаточно маленькой, оно очень быстро остывает и дальше не утончается.

Можно плавить стекло как масло, запаивать капсулы из стеклянных трубок:

Задача жизни выполнена, надеюсь и вам было интересно 🙂

Получение ацетилена

Ацетилен можно получить в лабораторных и промышленных условиях. Для получения ацетилена в лаборатории достаточно на карбид кальция (это его формула — СаС2) капнуть небольшое количество воды. после этого начинается бурная реакция выделения ацетилена. Для ее замедления допустимо использовать поваренную соль (формула NaCl).

В промышленных условиях все несколько сложнее. Для производства ацетилена применяют пиролиз метана, а так же пропана, бутана. В последнем случае формула ацетилена будет содержать большое количество примесей.

Карбидный способ производства ацетилена обеспечивает производство чистого газа. Но, такой метод получения продукта должен быть обеспечен большим количеством электроэнергии.

Пиролиз не требует большого количества электричества, все дело в том, что для производства газа, необходимо выполнить нагрев реактора и для этого используют газ, циркулирующий в первом контуре реактора. Но в потоке, который там перемещается, концентрация газа довольно мала.

Выделение ацетилена с чистой формулой во втором случае не самая простая задача и ее решение обходится довольно дорого. Существует несколько способов производства формулы ацетилена в промышленных условиях.

Электрический крекинг

Превращение метана в ацетилен происходит в электродуговой печи, при этом ее нагревают до температуры в 2000-3000 °С. При этом, напряжение на электродах достигает 1 кВ. Метан разогревают до 1600 °С. Для получения одной тонны ацетилена необходимо затратить 13 000 кВт×ч. Это существенный недостаток производства формулы ацетилена.

Технологическая схема крекинга

Пиролиз окислительный

Этот способ основан на перемешивании метана и кислорода. После производства смеси, часть ее отправляют на сжигание и полученное тепло отправляют на нагревание сырья до температуры в 16000 °С. Такой процесс отличается непрерывностью и довольно скромными затратами электрической энергии. На сегодня этот метод чаще всего можно встретить на предприятиях по производству ацетилена.

Технологическая схема процесса окислительного пиролиза

Кроме перечисленных технологий производства формулы ацетилена применяют такие как — гомогенный пиролиз, низкотемпературную плазму. Все они отличаются количеством энергетических затрат и в итоге разными характеристиками получаемого газа и его формулой.

Границы применимости

Толщина свариваемых материалов: применение газовой сварки экономически целесообразно для материалов толщиной до 10 мм.

Типы материалов: нелегированные и легированные стали, стальное литье, серый чугун, цветные металлы.

Область использования: сварка тонкостенных металлических изделий, сельскохозяйственное и транспортное машиностроение, монтаж и ремонт трубопроводов.

Параметры: скорость плавления стали 0,2 — 0,5, алюминия 0,15 — 0,2 кг/ч.

Выбор характеристики пламени: нейтральное пламя (соотношение горючий газ: кислород = 1: 1) применяют при сварке стали, окислительное пламя (избыток кислорода) — при сварке латуни, восстановительное пламя (избыток горючего газа) — при сварке алюминия и алюминиевых сплавов.

Положение шва при сварке: нижнее, горизонтальное, горизонтальное на вертикальной поверхности, полупотолочное, потолочное, вертикальное (снизу вверх и сверху вниз).

Технология и способы

Техника газовой сварки сильно зависит от специфики свариваемых металлов и сплавов, формы деталей, направления шва и других факторов.

Основное предназначение газосварки — обработка чугуна и цветных металлов, которые поддаются ей лучше, чем дуговой. Хуже всего «берет» она легированную сталь — из-за низкого коэффициента теплопередачи детали из нее сильно коробятся при варке газом.

Существует «правая» и «левая» методика газовой сварки. Есть также технология сварки валиком, ванночками и многослойная сварка.

«Правый» способ — это когда сварочное сопло ведут слева направо, а присадку подают вслед за движением огненной струи. Пламя при этом направлено на конец проволоки, так, что расплавленный состав — температура плавления присадки обычно ниже, чем у основного материала — ровно ложится в шов.

При «левом» способе газовой сварки — он считается основным — поступают наоборот. Горелка движется справа налево, присадка подается ей навстречу. Этот способ проще, но подходит только для тонких листов металла. Кроме того, при нем больше, чем при «правом», идет расход присадочной проволоки и горючего газа.

Сварка валиком — более трудоемкий способ, подходящий только для листового материала. Шов образуется в форме валика, но при этом качество шва очень высокое, без образования шлака, пор и воздушных лакун.

Сварка ванночками — способ, требующий от сварщика большого мастерства. При этом присадочная проволока укладывается в шов спиральным способом, проходя через разные участки пламени. Каждый новый виток спирали слегка перекрывает предыдущий. Способ хорошо подходит для соединения листов из низкоуглеродистых сталей.

Многослойная сварка — самый технологически сложный способ. Его основы — как бы наплавка одного слоя поверх следующего. При этом достигается идеальный прогрев всех нижележащих слоев. Главное — контролировать, чтобы стыки швов разных слоев не находились один под другим.

В каждом из этих видов газовой сварки могут использоваться, в зависимости от обрабатываемого металла, различные флюсы. Их задача состоит в том, чтобы защитить поверхность шва от образования окислов, нарушающих его качество.

Технологический процесс газосварки

Процесс работы начинается с открывания вентилей на баллонах и регулировки давления газа с помощью редукторов. Оптимальное значение напора газов – 2 атмосферы. При большем давлении, может быть затруднена регулировка пламени.

На горелке открываем вентиль подачи ацетилена и поджигаем газ. Затем постепенно открывая кислородный вентиль, регулируем пламя. Для сваривания черных металлов наиболее часто применяется нейтральное пламя горелки. Сам факел состоит из трех, хорошо видимых невооруженным глазом, частей.

Голубой цвет с незначительным зеленоватым отливом имеет ядро, которое расположено внутри пламени.

Далее идет рабочая область, отвечающая за нагрев и качество шва в процессе ацетиленовой сварки. Это восстановительное пламя и оно, как правило, светло-голубого цвета.

Самая большая часть – это факел горелки. Он отвечает за нагрев металла.

Для настройки нейтрального пламени, необходимо прислонить горелку к любой металлической поверхности и отрегулировать его вентилями подачи газа. Ядро не должно быть очень большим, а восстановительное пламя регулируется до определенного цвета.

Сначала выставляется размер факела. Это делается подачей ацетилена. Затем постепенно увеличивая подачу кислорода, добиваемся нормального пламени.

При этом не следует делать очень мощное пламя. Оно увеличит не только скорость ацетиленовой сварки, но и повысит количество прожогов и подрезов шва. Поэтому регулировка – это одна из основных операций, которая облегчает выполнение сварочных работ.

Нельзя выставлять длинный и оранжевый цвет факела. Такое горение будет снижать качество шва, внося в сварочную ванну избыток углерода.

Газокислородная сварка

Газокислородная сварка — химический способ сварки плавлением, источником нагрева металла которой является тепловая энергия, получаемая в результате химического процесса сгорания газообразного (или парообразного) горючего в смеси с кислородом.

Реакция окисления органических веществ в кислороде носят экзотермический характер и протекают с выделением значительной тепловой энергии. Ускорение реакции окисления имеет место при повышении давления и температуры кислорода.

До настоящего времени газовая сварка довольно широко применяется при сварке металла малых толщин, при сварке проката из цветных металлов, ремонтной сварки литых изделий из чугуна, бронзы, алюминиевых и магниевых сплавов, пайке твердыми и мягкими припоями, при сварке пластмасс.

Среди горючих газов (углеродводородосодержащие) наиболее применим ацетилен, имеющий температуру горения в кислороде, достигающей 3150°С. Несмотря на то, что ацетилен является универсальным газом, в ряде случаев обработки металлов газовым пламенем он может быть заменен другими более дешевыми горючими. Это в первую очередь относится к тем процессам, где газокислородное пламя используется для подогрева металла до температуры ниже температуры плавления стали (кислородная резка, поверхностная закалка, нагрев для правки, гибки и др.), а также при сварке легкоплавких металлов и пайке.

ГорючееАцетиленПропан бутанБензинМетанКеросинКоксовый газ
Максимальная температура (°С) пламени газов и паров жидкости в смеси с кислородом31502700 — 28002500 — 26002400 — 25002400 — 24502000

Типы пламени. Горение — быстро совершающаяся химическая реакция, сопровождающаяся выделением тепловой энергии. При газокислородной сварке газы нагреваются до температуры их свечения. Устойчивый процесс горения возможен только тогда, когда выделяющаяся при сгорании газовой смеси теплота оказывается достаточной не только для нагрева ещё невоспламенившихся объемов газа (горение газовой смеси — горючий газ плюс кислород или воздух — начинается с воспламенением её при определенной для данных условий температуре), но и для компенсации потерь теплоты в окружающее пространство в результате теплопроводности, лучеиспускания и конвекции. Поэтому, в трубках малого диаметра, в капиллярах, где теплоотвод стенками трубки особенно велик, горение газа невозможно. Необходимым условием горения горючего газа в кислороде или в воздухе является содержание горючего в смеси в определенных пределах, называемых температурой воспламенения.

Виды и структура газового пламени.
а — окислительное; б — нормальное; в — науглероживающее.
1 — ядро; 2 — восстановительная зона; 3 — факел

Строение пламени всех углеводородных смесей с кислородом одинаково и определяется в основном составом, т.е. соотношением горючей смеси (О2 / СхНу). Сварочное пламя состоит из трех зон: ядра, средней зоны (восстановительной зоны) и факела (окислительной зоны). Светящееся ядро имеют горючие газы, состоящие из углеводородов. Водородно-кислородное пламя ядра не образует и имеет светло-желтый оттенок.

По соотношению смеси сварочное пламя принято делить на нормальное, окислительное и науглероживающее. Нормальное пламя получают тогда, когда в горелку на один объем кислорода поступает один объем ацетилена. При избытке кислорода в смеси, пламя будет окислительным, а при избытке ацетилена — науглероживающим. Для газовой сварки применяют нормальное пламя или слегка науглероживающее (например, при сварке чугуна), а для резки металлов – слегка окислиельное.

Распределение температуры в пламени. Во внутреннем ядре пламени происходит повышение температуры смеси до температуры воспламенения. Перед фронтом пламени (поверхность воспламенения) существует незначительной толщины (≈1 мм) слой смеси, на границе которого наблюдается заметное повышение температуры, обуславливаемое теплопроводностью от фронта пламени. Именно в этом слое температура смеси повышается от начальной до температуры воспламенения. В средней зоне пламени температура резко возрастает до максимальной температуры пламени. В факеле происходит понижение температуры.

Недостатки

Кислородная сварка с использованием ацетилена имеет некоторые негативные качества, среди которых можно выделить:

  1. При нагреве появляется большая зона с изменениями в качествах материала. Именно по этой причине данная технология не применяется в сфере машиностроения.
  2. Не рекомендуется использовать для сваривания изделий с толщиной больше 5 мм. В этих случаях стоит применять полуавтоматическую или ручную электросварку.
  3. Ацетиленовое сваривание не подходит для изделий высокоуглеродистого металла.
  4. При сваривании внахлест металл будет сильно деформироваться. Кроме этого будут возникать области с чрезмерным напряжением.
  5. Если сравнивать с электродуговыми методами сварки, то для этой технологии требуются большие финансовые вложения на материалы и оборудование.

Однако стоит учитывать, что использование ацетилена для резки и сварки металлов может привести к неприятным последствиям. Дело в том, что данный газ достаточно сильно взрывоопасен, и если во время его применения не соблюдать технику безопасности, то может возникнуть сильный взрыв, который может навредить здоровью или повлечь более серьезные проблемы.

Помимо несоблюдения правил безопасности, также сварщики часто выполняют неправильные действия при обратном ударе, а это основные действия, которые могут привести к авариям при сварке. Специалисты при работе с ацетиленом для сварки должны иметь навыки выше тех, которые требуются при проведении полуавтоматической и автоматической сварки.

Стоит отметить! Ацетиленовая технология лучше подходит для стыковых соединений деталей. А качество соединения напрямую зависит от качества и чистоты ацетилена и кислорода.

Кроме этого данный вид сваривания подходит только для тонкостенных изделий из металла. При помощи него не можно сварить только некоторые виды цветных металлов. А сам стык получается не таким красивым и надежным, как, к примеру, у газосварки.

Пара слов о расходных материалах

Какой газ используют при сварке – вопрос не маловажный, в котором нужно разбираться, чтобы сделать верный выбор. Типы используемых газов разные, выбор зависит от нескольких факторов.

Кислород

Кислород, к примеру, отличается полным отсутствием цвета и запаха. Роль у него особая, он выполняет функцию катализатора процессов плавления металлов во время сварки. Хранение и транспортировка кислорода производятся в баллонах с постоянным давлением. Это дело непростое, но вполне выполнимое.

Пламя газовой горелки.

В помещениях, где хранятся баллоны, ни в коем случае не должно быть ни источником тепла, ни прямого солнечного света.

Как получают сварочный кислород: это делается достаточно просто – из атмосферного воздуха с помощью специализированного оборудования.

Кислород подразделяется по чистоте на три типа:

  • высший сорт с концентрацией газа в 99,5%;
  • первый сорт с 99,2%;
  • второй – с 98,5%.

Ацетилен

Это второй по популярности газ, применяемый в ГС как для сварки, так и для резки. Он также без цвета и запаха. При повышенном давлении или нагревании ацетилен может взорваться. Производится он из карбида кальция и воды.

Ацетилен – не самый дешевый газ, но его преимущество делает его очень востребованным среди сварщиков. Все дело в температуре горения – она у ацетилена замечательно высокая, особенно в сравнении с такими более дешевыми газами как метан, пропан или пары керосина.

Флюс и присадочная проволока

Это главные участники процесса формирования сварочного шва. Присадочная проволока должна быть абсолютно очищенной от малейших признаков грязи или коррозии. Иногда вместо проволоки можно применять полоску из такого же металла, что и заготовки для сваривания.

Единственный металл, который может обойтись без флюсовой смеси, это углеродистая сталь. Ну а особая нужда в присутствии флюса возникает при сварке меди, алюминия и их сплавов.

Специальные газокислородные процессы

Кислородное копье. Резка кислородным копьем заключается в прожигании в материале отверстия под действием химико-термомеханического воздействия. Воздействие на материал осуществляется стальной трубкой, конец которой нагрет до воспламенения, и через которую под давлением подается кислород.

Пламенная очистка, правка и предварительный подогрев. Для очистки поверхностей применяют газопламенный процесс. В зависимости от вида загрязнения применяют те или иные горючие газы, температура горения которых в кислороде достигает 2000 … 3000°С. Загрязнения в виде масел, красок, лаков сгорают в пламени, так как имеют низкую температуру плавления и воспламенения, и поэтому легко удаляются струёй пламени.

Окислы на поверхности деталей или элементов конструкции удалять сложнее. Очистка от окислов основана на локальном термомеханическом воздействии газокислородного пламени. Под действием температуры нагретые участки поверхности с окислами расширяются. Из-за различия в коэффициентах температурного расширения между окислами и основой возрастают напряжения, под действием которых может произойти разрушение их связи с поверхностью. Если же связи окислов с поверхностью прочны, то окислы пластически деформируются. А так как у них, как правило, низкий запас пластичности при обычных температурах, то их довольно легко можно удалять механическим воздействием, если они не разрушились самопроизвольно под воздействием остаточных напряжений, возникших в результате термического цикла нагрев — охлаждение.

Газопламенный нагрев применяют и для правки изделий, доводя дефектные участки до пластического состояния или упруго-пластического состояния. В зависимости от материала и степени правки температура процесса может достигать 0,4 … 0,6 Тпл. При достижении упруго-пластического или пластического состояния под действием незначительного механического воздействия осуществляют правку. Правку можно осуществлять без механического воздействия на дефектные участки. Как правило, это касается правки тонколистовых конструкций. Созданием необходимых условий для получения пластического сжатия при нагреве и возникновением растягивающих напряжений при охлаждении в дефектных местах осуществляют термическую правку.

Газопламенный нагрев применяют для предварительного и сопутствующего подогрева при сварке высокоуглеродистых или высоколегированных сталей и чугунов, медных сплавов.

Предварительный подогрев необходим для уменьшения влияния возникающих термических напряжений в результате локального сварочного нагрева на прочность сталей и чугунов при их сварке, а также для компенсации влияния теплопроводности меди и её сплавов при их сварке.

Как правило, газопламенный нагрев для правки, предварительного и сопутствующего подогрева изделий осуществляют многопламенными горелками. Необходимый горючий газ подбирают в зависимости от необходимой температуры и скорости нагрева.

Горелка для нагрева изделий из черных и цветных металлов

Газопрессовая сварка. При газопрессовой сварке место соединения нагревается пламенем многосопловой горелки до пластического состояния или оплавления, и свариваемые детали сжимаются путем приложения внешнего осевого усилия.

Достоинства и недостатки

Как и у любой вещи или явления, преимущества газовой сварки являются прямым отражением ее недостатков, и наоборот.

Основная характеристика газосварки — более низкая скорость нагрева оплавляемой зоны и более широкие границы этой зоны. В некоторых случаях это плюс, а в других — минус.

Это плюс, если нужно , цветных металлов или чугуна. Для них требуется плавный нагрев и плавное охлаждение. Также существует ряд сталей специализированного назначения, для которых оптимален именно такой режим обработки.

К другим плюсам относится:

  • невысокая сложность технологического процесса газовой сварки;
  • доступность, адекватная стоимость оборудования;
  • доступность газовой смеси либо карбида кальция;
  • отсутствие необходимости в мощном источнике энергии;
  • контроль мощности пламени;
  • контроль вида пламени;
  • возможность контроля режимов.

Основных минусов у газовой сварки четыре. Первый — именно низкая скорость нагрева и большое рассеивание тепла (сравнительно низкий КПД). Из-за этого практически невозможно сваривать металл толщиной свыше 5 мм.

Второй — слишком широкая зона термического влияния, то есть зона нагрева. Третий — себестоимость. Цена расходуемого ацетилена при газосварке выше, чем цена электроэнергии, затраченной на тот же объем работы.

Ее четвертый недостаток — слабый потенциал механизации. Из-за своего принципа действия фактически может быть реализована только ручная газовая сварка.

Полуавтоматический метод невозможен, автоматический — только с применением многопламенной горелки, и только при сварке тонкостенных труб либо иных резервуаров. Такой метод сложен и рентабелен лишь при производстве полых резервуаров из алюминия, чугуна либо некоторых их сплавов.

Технология сварки

Перед тем как варить ацетилен сваркой, необходимо открыть подачу ацетиленового газа до появления резкого специфичного запаха. Горелка поджигается, после чего надо постепенно добавлять кислород до образования устойчивого синего пламени

Обратите внимание, что на каждом баллоне: ацетиленовом и кислородном установлены редукторы. Так вот при подаче обоих газов на ацетиленовом баллоне должна устанавливаться подача под давлением 2-4 атм, на кислородном до 2 атм

Повышать давление нет смысла, потому что это приведет к неправильной регулировке горючей смеси.

Когда производится сварка черных металлов, то обычно сварщики устанавливают так называемое нейтральное пламя. Состоит оно из трех частей, которые четко видны невооруженным глазом:

  • Внутри располагается ядро, оно имеет яркий голубой окрас нередко с зеленоватым оттенком.
  • Далее идет восстановительное пламя. Это так называемая рабочая область, имеющая бледно-голубой окрас.
  • И сверху располагается факел пламени. И он тоже является рабочим.

Всего специалисты отмечают четыре разновидности пламени ацетиленовой сварки, но именно нейтральный вид используется чаще всего. Его нужно правильно настроить. И если настройка была проведена неграмотно, то сварка ацетиленом будет не варить металл, а резать его

Очень важно не допустить, чтобы пламя горелки было длинным и с оранжевым концом. Такое пламя вводит в нагретый металл углерод в избытке

А этот химический элемент для сварочного процесса – не самый лучший показатель.

Оборудование для ацетиленовой сварки

Так как процесс ацетиленовой сварки основывается на горении смеси газов один, из которых ацетилен, а другой — кислород, то для возможности проведения такого технологического процесса потребуется:

  • Емкость для хранения кислорода. При мобильной версии оборудования — это стандартный кислородный баллон сине-голубого цвета для хранения и транспортировки сжатого кислорода на 40 л. Причем существует и более облегченная версия на 10 л. На промышленном производстве, при наличии собственной кислородной станции, подачу кислорода осуществляют по системе кислородопроводов.
  • Емкость для генерации или хранения ацетилена. Для этого в одном варианте использовались стандартные баллоны для хранения и транспортировки сжатого газа серого цвета или сниженного, но уже красного цвета. В этом случае ацетилен вырабатывался промышленным способом, а баллоны заправлялись на специальных газогенераторных станциях.

Но наиболее широкое распространение имели так называемые газогенераторы, которые служили для генерации ацетилена непосредственно на месте проведения сварочных работ из карбида кальция. Такой аппарат представлял собой небольшую герметичную емкость, в свою очередь состоящую из двух объемных отделений: внешнего и внутреннего, имеющих общую нижнюю полость.

Работа такого генератора происходила гениально просто. На дно аппарата заливалась вода до определенного уровня, а во внутреннее отделение помещалась металлическая корзина с кусками карбида кальция так, чтобы низ корзины погрузился в воду для начала химической реакции. Далее, емкость генератора герметично закрывалась и генерируемый газ для сварки забирался из специального патрубка. В случае, если разбор газа отставал от объемов выработки, образовавшийся «лишний» газ во внутреннем объеме, создавая избыточное давление, выдавливал воду во внешний объем, чем обезвоживал корзину с карбидом и останавливал процесс генерации ацетилена. Во время проведения сварочных работ такой ход процессов в генераторе повторялся неоднократно.

Дополнительное газобаллонное оборудование, состоящее из резиновых кислородных шлангов, как правило, рассчитанных на 10-16 атм и газовых редукторов для каждого вида газа в отдельности. Причем ацетиленовый редуктор имел черный цвет и все резьбовые соединения левосторонней направленности, а вот кислородное оборудование было синего цвета и могло накручиваться только правосторонней резьбой.

Эта резьбовая особенность разделения принадлежности оборудования к тому или иному газу была сделана в целях техники безопасности, чтобы при подготовке сварочного оборудования к работе сварщик случайно не перепутал шланги и редуктора, так как это могло привести к аварийной ситуации.

Сварочные горелки, представляющие собой систему трубок с запорно-регулирующими кранами, смесительной камерой и соплом. Так же, как и на редукторах, каждый вид газа имеет свой собственный штуцер с левой или правой резьбой соответственно.

В основном применялись газопламенные горелки с номерами от «0» до «5», что определяло их рабочие возможности по интенсивности истечения газов и силе пламени. Так, нулевой номер применялся для самых тонких деталей, а четвертый и пятый номера были, по сути, уже газовыми резаками и применялись для соединения металла толщиной в 4-5 мм или для кислородной резки различных металлических конструкций.

Сегодня этот вид сварки практически уходит в небытие, оставляя за собой прочные позиции в ювелирной промышленности и точном приборостроении.

Если у вас есть свой опыт использования ацетиленовой сварки, то поделитесь им в блоке комментариев.

Рейтинг автора
5
Материал подготовил
Степан Волков
Наш эксперт
Написано статей
141
Ссылка на основную публикацию
Похожие публикации